1
|
Amirikhah R, Etemadi N, Sabzalian MR, Nikbakht A, Eskandari A. Gamma radiation negatively impacted seed germination, seedling growth and antioxidant enzymes activities in tall fescue infected with Epichloë endophyte. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112169. [PMID: 33826977 DOI: 10.1016/j.ecoenv.2021.112169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Plants and their accompanying microorganisms growing in contaminated sites with long-lived gamma-emitting radionuclides may be affected by radiation stress. The present study aimed to investigate the effects of gamma radiation on symbiotic relationship between Epichloë endophyte and Festuca arundinacea plant along with the radio-sensitivity of a pair of clones of tall fescue with (E+) and without (E-) symbiotic Epichloë endophyte exposed to different doses of gamma radiation including 25, 50, 75, 100, 150, 200, 300, and 400 Gray (Gy) from a Cobalt-60 source. Both irradiated and non-irradiated seeds of each status were grown under controlled conditions. Seed germination indices, seedling growth and certain physiological criteria associated with plant responses to oxidative stress were examined. The results revealed that low doses (up to 75 Gy) of gamma radiation stimulated seed germination indices and seedling growth. However, high doses (100-400 Gy) significantly reduced the final germination percentage, germination rate index, coefficient of velocity of germination, and the seed reserve depletion percentage, and enhanced the mean germination time. Further, high doses of radiation reduced root and shoot lengths, root and shoot fresh weights, and activities of antioxidant enzymes (especially catalase and superoxide dismutase), and increased the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) of the seedlings. The results showed that the endophyte was present in seeds after gamma ray irradiation. However, the presence of endophyte in seedlings started to be reduced significantly (18.45% reduction rather than the control) at 50 Gy of gamma radiation. High doses (100 Gy and above) dramatically declined the presence of endophyte down to zero in seedlings compared to the control. In this study, the E- clone had higher seed germination and seedling growth as well as lower H2O2 and MDA contents under radiation stress as compared with the E+ clone. Additionally, shoot tolerance index (STI) indicated more radiation tolerance in the E- clone. According to the results of the present study, it is concluded that biological impacts of gamma radiation stress and the harmful effects on endophyte viability may cause more radio-sensitivity and changes in the growth and physio-biochemical aspects of the host plant.
Collapse
Affiliation(s)
- Rahim Amirikhah
- Department of Horticultural Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticultural Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran.
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Ali Nikbakht
- Department of Horticultural Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Ali Eskandari
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| |
Collapse
|
2
|
Paunesku T, Stevanović A, Popović J, Woloschak GE. Effects of low dose and low dose rate low linear energy transfer radiation on animals - review of recent studies relevant for carcinogenesis. Int J Radiat Biol 2021; 97:757-768. [PMID: 33289582 PMCID: PMC9216178 DOI: 10.1080/09553002.2020.1859155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Purpose: Carcinogenic effects of radiation are often assumed to be universally understood, more often than, for example, carcinogenic effects of many different chemicals. This in turn leads to an assumption that any dose of radiation, delivered at any dose rate, poses a serious health challenge. This remains an issue of dispute and low dose radiation research is focused on understanding whether these exposures contribute to cancer incidence. This review is focused on the low linear energy transfer (low LET) radiation exposures for which the data is the most abundant in recent years. Materials and methods: Review of the literature between 2008 and today, highlighting some of the most diverse studies in low dose research. Results: Low dose and low dose rate, low LET ionizing radiation animal studies suggest that the effects of exposure very much depend on animal genotype and health status.Conclusions: Only the integration of all of the data from different models and studies will lead to a fuller understanding of low dose radiation effects. Therefore, we hope to see an increase in international archival efforts and exchange of raw data information opening the possibilities for new types of meta analyses.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Aleksandra Stevanović
- Multidisciplinary Studies of History and Philosophy of Natural Sciences and Technology, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Cho K, Imaoka T, Klokov D, Paunesku T, Salomaa S, Birschwilks M, Bouffler S, Brooks AL, Hei TK, Iwasaki T, Ono T, Sakai K, Wojcik A, Woloschak GE, Yamada Y, Hamada N. Funding for radiation research: past, present and future. Int J Radiat Biol 2019; 95:816-840. [PMID: 30601684 PMCID: PMC7340138 DOI: 10.1080/09553002.2018.1558303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
For more than a century, ionizing radiation has been indispensable mainly in medicine and industry. Radiation research is a multidisciplinary field that investigates radiation effects. Radiation research was very active in the mid- to late 20th century, but has then faced challenges, during which time funding has fluctuated widely. Here we review historical changes in funding situations in the field of radiation research, particularly in Canada, European Union countries, Japan, South Korea, and the US. We also provide a brief overview of the current situations in education and training in this field. A better understanding of the biological consequences of radiation exposure is becoming more important with increasing public concerns on radiation risks and other radiation literacy. Continued funding for radiation research is needed, and education and training in this field are also important.
Collapse
Affiliation(s)
- Kunwoo Cho
- Natural Radiation Safety Department, Korea Institute of Nuclear Safety (KINS), Daejeon, South Korea
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS) National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Dmitry Klokov
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, Ontario, Canada
- Ottawa, University of Ottawa, Ontario, Canada
| | - Tatjana Paunesku
- Department of Radiation Oncology Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mandy Birschwilks
- Unit PB3 “National and International Cooperation in Radiation Protection”, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Simon Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Oxfordshire, UK
| | - Antone L. Brooks
- Environmental Science Washington State University, Richland, WA, USA
| | - Tom K. Hei
- Center for Radiological Research, Department of Radiation Oncology College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Tetsuya Ono
- Department of Radiobiology, Institute for Environmental Sciences (IES), Aomori, Japan
| | - Kazuo Sakai
- Faculty of Nursing, Tokyo Healthcare University, Tokyo, Japan
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, Stockholm, Sweden
| | - Gayle E. Woloschak
- Department of Radiation Oncology Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
4
|
Brooks AL. The impact of dose rate on the linear no threshold hypothesis. Chem Biol Interact 2019; 301:68-80. [PMID: 30763551 DOI: 10.1016/j.cbi.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The goal of this manuscript is to define the role of dose rate and dose protraction on the induction of biological changes at all levels of biological organization. Both total dose and the time frame over which it is delivered are important as the body has great capacity to repair all types of biological damage. The importance of dose rate has been recognized almost from the time that radiation was discovered and has been included in radiation standards as a Dose, Dose Rate, Effectiveness Factor (DDREF) and a Dose Rate Effectiveness Factor (DREF). This manuscript will evaluate the role of dose rate at the molecular, cellular, tissue, experimental animals and humans to demonstrate that dose rate is an important variable in estimating radiation cancer risk and other biological effects. The impact of low-dose rates on the Linear-No-Threshold Hypothesis (LNTH) will be reviewed since if the LNTH is not valid it is not possible to calculate a single value for a DDREF or DREF. Finally, extensive human experience is briefly reviewed to show that the radiation risks are not underestimated and that radiation at environmental levels has limited impact on total human cancer risk.
Collapse
Affiliation(s)
- Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA.
| |
Collapse
|
5
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
6
|
Seong KM, Kwon T, Park J, Youn B, Cha HJ, Kim Y, Moon C, Lee SS, Jin YW. Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea. Int J Radiat Biol 2018; 94:685-693. [PMID: 29775393 DOI: 10.1080/09553002.2018.1478163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. CONCLUSIONS After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Collapse
Affiliation(s)
- Ki Moon Seong
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - TaeWoo Kwon
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jina Park
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - BuHyun Youn
- b Department of Biological Sciences , Pusan National University , Busan , Republic of Korea
| | - Hyuk-Jin Cha
- c School of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yonghwan Kim
- d Department of Biological Sciences , Sookmyung Women's University , Seoul , Republic of Korea
| | - Changjong Moon
- e Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 PLUS Project Team , Chonnam National University , Gwangju , Republic of Korea
| | - Seung-Sook Lee
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea.,f Department of Pathology , Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Young Woo Jin
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
7
|
Paunesku T, Haley B, Brooks A, Woloschak GE. Biological basis of radiation protection needs rejuvenation. Int J Radiat Biol 2017; 93:1056-1063. [PMID: 28287035 PMCID: PMC7340141 DOI: 10.1080/09553002.2017.1294773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Human beings encounter radiation in many different situations - from proximity to radioactive waste sites to participation in medical procedures using X-rays etc. Limits for radiation exposures are legally regulated; however, current radiation protection policy does not explicitly acknowledge that biological, cellular and molecular effects of low doses and low dose rates of radiation differ from effects induced by medium and high dose radiation exposures. Recent technical developments in biology and medicine, from single cell techniques to big data computational research, have enabled new approaches for study of biology of low doses of radiation. Results of the work done so far support the idea that low doses of radiation have effects that differ from those associated with high dose exposures; this work, however, is far from sufficient for the development of a new theoretical framework needed for the understanding of low dose radiation exposures. CONCLUSIONS Mechanistic understanding of radiation effects at low doses is necessary in order to develop better radiation protection policy.
Collapse
Affiliation(s)
- Tatjana Paunesku
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Benjamin Haley
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Antone Brooks
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Gayle E Woloschak
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| |
Collapse
|
8
|
Affiliation(s)
- R. Julian Preston
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
9
|
Abstract
Although there is no doubt that exposure to high doses of radiation (delivered at a high dose-rate) induces harmful effects, the health risks and benefits of exposure to low levels (delivered at a low dose-rate) of toxic agents is still a challenging public health issue. There has been a considerable amount of published data against the linear no-threshold (LNT) model for assessing risk of cancers induced by radiation. The LNT model for risk assessment creates "radiophobia," which is a serious public health issue. It is now time to move forward to a paradigm shift in health risk assessment of low-dose exposure by taking the differences between responses to low and high doses into consideration. Moreover, future research directed toward the identification of mechanisms associated with responses to low-dose radiation is critically needed to fully understand their beneficial effects.
Collapse
|