1
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
2
|
Effects of low-dose, short-duration periods of asymmetric radiation on colony formation of C6 glioma cell cultures. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1028643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background/Aim: Previous studies on fractionation in radiation therapy have been mainly based on applying equal doses over at least 6 h. The main purpose of fractionation is to increase normal tissue tolerance rather than tumor sensitivity. Thus, one can apply higher doses to the tumor. In contrast, new molecular studies indicate that high and low doses of radiation act by different mechanisms. This study was conducted to investigate the radiobiological effect of asymmetrical radiation doses.
Methods: This is an experimental study done in vitro with a G6 glioma cell line to investigate the responses when C6 glioma cells are irradiated with single doses of 30 and 230 cGy using an orthovoltage therapy device or doses split into 30 and 200 and 115 and 115 cGy within periods of 15 and 30 min. A total of 5 × 103 cells were transferred to polyethylene culture flasks for colony formation. A cluster containing more than 30 cells was considered a new colony.
Results: A single dose of 230 cGy caused a 56.8% reduction in colony formation. However, when 230 cGy was divided over 15- and 30-min periods in fractions of 30 and 200 cGy, colony formation was significantly reduced compared to the control group (68.13% and 52.64%, P = 0.030, respectively). This effect continued when the radiation dose was divided into equal fractions (115 and 115 cGy) with periods of 15 and 30 min (42.60%, P = 0.021 and 20.77%, P = 0.008, respectively).
Conclusion: According to these results, (i) short interval (15 and 30 min) fractionation significantly reduces colony formation compared to a single equal dose; and (ii) the protective mechanisms activated in cell response probably vary at different radiation doses and different fractions.
Collapse
|
3
|
Sangsuwan T, Mannervik M, Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503523. [PMID: 36031335 DOI: 10.1016/j.mrgentox.2022.503523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.
Collapse
Affiliation(s)
- Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Cimap-Aria, Ganil, and Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.
| |
Collapse
|
4
|
Fornalski KW, Adamowski Ł, Dobrzyński L, Jarmakiewicz R, Powojska A, Reszczyńska J. The radiation adaptive response and priming dose influence: the quantification of the Raper-Yonezawa effect and its three-parameter model for postradiation DNA lesions and mutations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:221-239. [PMID: 35150289 PMCID: PMC9021059 DOI: 10.1007/s00411-022-00963-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The priming dose effect, called also the Raper-Yonezawa effect or simply the Yonezawa effect, is a special case of the radiation adaptive response phenomenon (radioadaptation), which refers to: (a) faster repair of direct DNA lesions (damage), and (b) DNA mutation frequency reduction after irradiation, by applying a small priming (conditioning) dose prior to the high detrimental (challenging) one. This effect is observed in many (but not all) radiobiological experiments which present the reduction of lesion, mutation or even mortality frequency of the irradiated cells or species. Additionally, the multi-parameter model created by Dr. Yonezawa and collaborators tried to explain it theoretically based on experimental data on the mortality of mice with chronic internal irradiation. The presented paper proposes a new theoretical approach to understanding and explaining the priming dose effect: it starts from the radiation adaptive response theory and moves to the three-parameter model, separately for two previously mentioned situations: creation of fast (lesions) and delayed damage (mutations). The proposed biophysical model was applied to experimental data-lesions in human lymphocytes and chromosomal inversions in mice-and was shown to be able to predict the Yonezawa effect for future investigations. It was also found that the strongest radioadaptation is correlated with the weakest cellular radiosensitivity. Additional discussions were focussed on more general situations where many small priming doses are used.
Collapse
Affiliation(s)
- Krzysztof W Fornalski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland.
| | - Łukasz Adamowski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Ludwik Dobrzyński
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Rafał Jarmakiewicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Aleksandra Powojska
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Joanna Reszczyńska
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw (WUM), ul. T. Chałubińskiego 5, 02-004, Warsaw, Poland
| |
Collapse
|
5
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
6
|
Tanaka Y, Furuta M. Biological effects of low-dose γ-ray irradiation on chromosomes and DNA of Drosophila melanogaster. JOURNAL OF RADIATION RESEARCH 2021; 62:1-11. [PMID: 33290547 PMCID: PMC7779362 DOI: 10.1093/jrr/rraa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/27/2020] [Indexed: 06/12/2023]
Abstract
While the damage to chromosomes and genes induced by high-dose radiation (HDR) has been well researched in many organisms, the effects of low-dose radiation (LDR), defined as a radiation dose of ≤100 mSv, are still being debated. Recent research has suggested that the biological effects of LDR differ from those observed in HDR. To detect the effect of LDR on genes, we selected a gene of Drosophila melanogaster, known as the multiple wing hair (mwh) gene. The hatched heterozygous larvae with genotype mwh/+ were irradiated by γ-rays of a 60Co source. After eclosion, the wing hairs of the heterozygous flies were observed. The area of only one or two mwh cells (small spot) and that of more than three mwh cells (large spot) were counted. The ratio of the two kinds of spots were compared between groups irradiated by different doses including a non-irradiated control group. For the small spot in females, the eruption frequency increased in the groups irradiated with 20-75 mGy, indicating hypersensitivity (HRS) to LDR, while in the groups irradiated with 200 and 300 mGy, the frequency decreased, indicating induced radioresistance (IRR), while in males, 50 and 100 mGy conferred HRS and 75 and 200 mGy conferred IRR. For the large spot in females, 75 mGy conferred HRS and 100-800 mGy conferred IRR. In conclusion, HRS and IRR to LDR was found in Drosophila wing cells by delimiting the dose of γ-rays finely, except in the male large spot.
Collapse
Affiliation(s)
- Yoshiharu Tanaka
- Corresponding author. Radiation Biology and Molecular Genetics, Division of Quantum Radiation, Faculty of Technology and Biology and Cultural Sciences, Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Tel: 81-72-254-9750;
| | - Masakazu Furuta
- Radiation Biology and Molecular Genetics, Division of Quantum Radiation, Faculty of Technology and Department of Radiation Research Center, Osaka Prefecture University, 1-2 Gakuencho, Naka-ku, Sakai 591-8531, Japan
| |
Collapse
|
7
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
8
|
Devic C, Ferlazzo ML, Foray N. Influence of Individual Radiosensitivity on the Adaptive Response Phenomenon: Toward a Mechanistic Explanation Based on the Nucleo-Shuttling of ATM Protein. Dose Response 2018; 16:1559325818789836. [PMID: 30093841 PMCID: PMC6081762 DOI: 10.1177/1559325818789836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023] Open
Abstract
The adaptive response (AR) phenomenon generally describes a protective effect caused by a "priming" low dose (dAR) delivered after a period of time (ΔtAR) before a higher "challenging" dose (DAR). The AR is currently observed in human cells if dAR, ΔtAR, and DAR belong to (0.001-0.5 Gy), (2-24 hours), (0.1-5 Gy), respectively. In order to investigate the molecular mechanisms specific to AR in human cells, we have systematically reviewed the experimental AR protocols, the cellular models, and the biological endpoints used from the 1980s. The AR appears to be preferentially observed in radiosensitive cells and is strongly dependent on individual radiosensitivity. To date, the model of the nucleo-shuttling of the ATM protein provides a relevant mechanistic explanation of the AR molecular and cellular events. Indeed, the priming dose dAR may result in the diffusion of a significant amount of active ATM monomers in the nucleus. These ATM monomers, added to those induced directly by the challenging dose DAR, may increase the efficiency of the response to DAR by a better ATM-dependent DNA damage recognition. Such mechanistic model would also explain why AR is not observed in radioresistant or hyperradiosensitive cells. Further investigations at low dose are needed to consolidate our hypotheses.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France.,Fibermetrix Company, Strasbourg, France
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| |
Collapse
|
9
|
Paunesku T, Haley B, Brooks A, Woloschak GE. Biological basis of radiation protection needs rejuvenation. Int J Radiat Biol 2017; 93:1056-1063. [PMID: 28287035 PMCID: PMC7340141 DOI: 10.1080/09553002.2017.1294773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Human beings encounter radiation in many different situations - from proximity to radioactive waste sites to participation in medical procedures using X-rays etc. Limits for radiation exposures are legally regulated; however, current radiation protection policy does not explicitly acknowledge that biological, cellular and molecular effects of low doses and low dose rates of radiation differ from effects induced by medium and high dose radiation exposures. Recent technical developments in biology and medicine, from single cell techniques to big data computational research, have enabled new approaches for study of biology of low doses of radiation. Results of the work done so far support the idea that low doses of radiation have effects that differ from those associated with high dose exposures; this work, however, is far from sufficient for the development of a new theoretical framework needed for the understanding of low dose radiation exposures. CONCLUSIONS Mechanistic understanding of radiation effects at low doses is necessary in order to develop better radiation protection policy.
Collapse
Affiliation(s)
- Tatjana Paunesku
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Benjamin Haley
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Antone Brooks
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Gayle E Woloschak
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| |
Collapse
|
10
|
Sergeeva VA, Ershova ES, Veiko NN, Malinovskaya EM, Kalyanov AA, Kameneva LV, Stukalov SV, Dolgikh OA, Konkova MS, Ermakov AV, Veiko VP, Izhevskaya VL, Kutsev SI, Kostyuk SV. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9515809. [PMID: 28904740 PMCID: PMC5585687 DOI: 10.1155/2017/9515809] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
We have hypothesized that the adaptive response to low doses of ionizing radiation (IR) is mediated by oxidized cell-free DNA (cfDNA) fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production), induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs) with low doses of IR (10 cGy) leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.
Collapse
Affiliation(s)
- V. A. Sergeeva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - E. S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | - N. N. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | | | - A. A. Kalyanov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - L. V. Kameneva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. V. Stukalov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - O. A. Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - M. S. Konkova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - A. V. Ermakov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - V. P. Veiko
- Bach Institute of Biochemistry and Russian Academy of Sciences, 33 Leninskii Ave., Moscow 119071, Russia
| | - V. L. Izhevskaya
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. I. Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - S. V. Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| |
Collapse
|
11
|
McRobb LS, Lee VS, Simonian M, Zhao Z, Thomas SG, Wiedmann M, Raj JVA, Grace M, Moutrie V, McKay MJ, Molloy MP, Stoodley MA. Radiosurgery Alters the Endothelial Surface Proteome: Externalized Intracellular Molecules as Potential Vascular Targets in Irradiated Brain Arteriovenous Malformations. Radiat Res 2017; 187:66-78. [PMID: 28054837 DOI: 10.1667/rr14518.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stereotactic radiosurgery (SRS) is an established treatment for brain arteriovenous malformations (AVMs) that drives blood vessel closure through cellular proliferation, thrombosis and fibrosis, but is limited by a delay to occlusion of 2-3 years and a maximum treatable size of 3 cm. In this current study we used SRS as a priming tool to elicit novel protein expression on the endothelium of irradiated AVM vessels, and these proteins were then targeted with prothrombotic conjugates to induce rapid thrombosis and vessel closure. SRS-induced protein changes on the endothelium in an animal model of AVM were examined using in vivo biotin labeling of surface-accessible proteins and comparative proteomics. LC-MS/MS using SWATH acquisition label-free mass spectrometry identified 280 proteins in biotin-enriched fractions. The abundance of 56 proteins increased after irradiation of the rat arteriovenous fistula (20 Gy, ≥1.5-fold). A large proportion of intracellular proteins were present in this subset: 29 mitochondrial and 9 cytoskeletal. Three of these proteins were chosen for further validation based on previously published evidence for surface localization and a role in autoimmune stimulation: cardiac troponin I (TNNI3); manganese superoxide dismutase (SOD2); and the E2 subunit of the pyruvate dehydrogenase complex (PDCE2). Immunostaining of AVM vessels confirmed an increase in abundance of PDCE2 across the vessel wall, but not a measurable increase in TNNI3 or SOD2. All three proteins co-localized with the endothelium after irradiation, however, more detailed subcellular distribution could not be accurately established. In vitro, radiation-stimulated surface translocation of all three proteins was confirmed in nonpermeabilized brain endothelial cells using immunocytochemistry. Total protein abundance increased modestly after irradiation for PDCE2 and SOD2 but decreased for TNNI3, suggesting that radiation primarily affects subcellular distribution rather than protein levels. The novel identification of these proteins as surface exposed in response to radiation raises important questions about their potential role in radiation-induced inflammation, fibrosis and autoimmunity, but may also provide unique candidates for vascular targeting in brain AVMs and other vascular tissues.
Collapse
Affiliation(s)
- Lucinda S McRobb
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Vivienne S Lee
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Margaret Simonian
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,c Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Zhenjun Zhao
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Santhosh George Thomas
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Markus Wiedmann
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jude V Amal Raj
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Michael Grace
- d Genesis Cancer Care, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Vaughan Moutrie
- d Genesis Cancer Care, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Matthew J McKay
- b Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Mark P Molloy
- b Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marcus A Stoodley
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Yang G, Li W, Jiang H, Liang X, Zhao Y, Yu D, Zhou L, Wang G, Tian H, Han F, Cai L, Cui J. Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 2016; 139:2157-2168. [PMID: 27299986 DOI: 10.1002/ijc.30235] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
It has been generally accepted that both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. However, accumulating evidence has shown that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation. LDR can stimulate proliferation of normal cells and activate their defense systems, while these biological effects are not observed in some cancer cell types. Although there is still no concordance on this matter, the fact that LDR has the potential to enhance the effects of cancer therapeutics and reduce the toxic side effects of anti-cancer therapy has garnered significant interest. Here, we provide an overview of the current knowledge regarding the experimental data detailing the different responses of normal and cancer tissues to LDR, the underlying mechanisms, and its significance in clinical application.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyu Jiang
- Health Examination Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guanjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
- Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY, 40202.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Yang G, Yu D, Li W, Zhao Y, Wen X, Liang X, Zhang X, Zhou L, Hu J, Niu C, Tian H, Han F, Chen X, Dong L, Cai L, Cui J. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling. Oncotarget 2016; 7:71856-71872. [PMID: 27708248 PMCID: PMC5342128 DOI: 10.18632/oncotarget.12379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/25/2016] [Indexed: 11/30/2022] Open
Abstract
Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3β signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3β signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jifan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lihua Dong
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
- Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|