1
|
Suzuki M, Funayama T, Suzuki M, Kobayashi Y. Radiation-quality-dependent bystander cellular effects induced by heavy-ion microbeams through different pathways. JOURNAL OF RADIATION RESEARCH 2023; 64:824-832. [PMID: 37658690 PMCID: PMC10516730 DOI: 10.1093/jrr/rrad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 09/03/2023]
Abstract
We investigated the radiation-quality-dependent bystander cellular effects using heavy-ion microbeams with different ion species. The heavy-ion microbeams were produced in Takasaki Ion Accelerators for Advanced Radiation Application, National Institutes for Quantum Science and Technology. Carbon (12C5+, 220 MeV), neon (20Ne7+, 260 MeV) and argon (40Ar13+, 460 MeV) ions were used as the microbeams, collimating the beam size with a diameter of 20 μm. After 0.5 and 3 h of irradiation, the surviving fractions (SFs) are significantly lower in cells irradiated with carbon ions without a gap-junction inhibitor than those irradiated with the inhibitor. However, the same SFs with no cell killing were found with and without the inhibitor at 24 h. Conversely, no cell-killing effect was observed in argon-ion-irradiated cells at 0.5 and 3 h; however, significantly low SFs were found at 24 h with and without the inhibitor, and the effect was suppressed using vitamin C and not dimethyl sulfoxide. The mutation frequency (MF) in cells irradiated with carbon ions was 8- to 6-fold higher than that in the unirradiated control at 0.5 and 3 h; however, no mutation was observed in cells treated with the gap-junction inhibitor. At 24 h, the MFs induced by each ion source were 3- to 5-fold higher and the same with and without the inhibitor. These findings suggest that the bystander cellular effects depend on the biological endpoints, ion species and time after microbeam irradiations with different pathways.
Collapse
Affiliation(s)
- Masao Suzuki
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
2
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
3
|
Sammer M, Girst S, Dollinger G. Optimizing proton minibeam radiotherapy by interlacing and heterogeneous tumor dose on the basis of calculated clonogenic cell survival. Sci Rep 2021; 11:3533. [PMID: 33574390 PMCID: PMC7878903 DOI: 10.1038/s41598-021-81708-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Proton minibeam radiotherapy (pMBRT) is a spatial fractionation method using sub-millimeter beams at center-to-center (ctc) distances of a few millimeters to widen the therapeutic index by reduction of side effects in normal tissues. Interlaced minibeams from two opposing or four orthogonal directions are calculated to minimize side effects. In particular, heterogeneous dose distributions applied to the tumor are investigated to evaluate optimized sparing capabilities of normal tissues at the close tumor surrounding. A 5 cm thick tumor is considered at 10 cm depth within a 25 cm thick water phantom. Pencil and planar minibeams are interlaced from two (opposing) directions as well as planar beams from four directions. An initial beam size of σ0 = 0.2 mm (standard deviation) is assumed in all cases. Tissue sparing potential is evaluated by calculating mean clonogenic cell survival using a linear-quadratic model on the calculated dose distributions. Interlacing proton minibeams for homogeneous irradiation of the tumor has only minor benefits for the mean clonogenic cell survival compared to unidirectional minibeam irradiation modes. Enhanced mean cell survival, however, is obtained when a heterogeneous dose distribution within the tumor is permitted. The benefits hold true even for an elevated mean tumor dose, which is necessary to avoid cold spots within the tumor in concerns of a prescribed dose. The heterogeneous irradiation of the tumor allows for larger ctc distances. Thus, a high mean cell survival of up to 47% is maintained even close to the tumor edges for single fraction doses in the tumor of at least 10 Gy. Similar benefits would result for heavy ion minibeams with the advantage of smaller minibeams in deep tissue potentially offering even increased tissue sparing. The enhanced mean clonogenic cell survival through large ctc distances for interlaced pMBRT with heterogeneous tumor dose distribution results in optimum tissue sparing potential. The calculations show the largest enhancement of the mean cell survival in normal tissue for high-dose fractions. Thus, hypo-fractionation or even single dose fractions become possible for tumor irradiation. A widened therapeutic index at big cost reductions is offered by interlaced proton or heavy ion minibeam therapy.
Collapse
Affiliation(s)
- Matthias Sammer
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85579, Neubiberg, Germany.
| | - Stefanie Girst
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85579, Neubiberg, Germany
| | - Günther Dollinger
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85579, Neubiberg, Germany
| |
Collapse
|
4
|
Fu J, Zhu L, Tu W, Wang X, Pan Y, Bai Y, Dang B, Chen J, Shao C. Macrophage-Mediated Bystander Effects after Different Irradiations through a p53-dependent Pathway. Radiat Res 2019; 193:119-129. [PMID: 31841081 DOI: 10.1667/rr15354.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this work was to elucidate the mechanisms of bystander effects outside the localized irradiation field and their potential hematological toxicity. In this study, an in vitro multicellular co-culture system was used to investigate the intercellular commutation and related signaling pathways between either irradiated A549 cells or Beas-2B cells and bystander lymphoblast TK6 cells with or without macrophage U937 cells as an intermediator. Results showed that the proliferation ability of bystander TK6 cells was inhibited after co-culture with A549 cells irradiated with γ rays rather than carbon ions. When macrophages were contained in the co-culture system, the cell viability damage to the bystander TK6 cells were further enhanced. However, the proliferation inhibition of bystander TK6 cells after co-culture with irradiated Beas-2B cells was observed only when intermediator macrophages existed in the cell co-culture system. More serious cell injury was detected after carbon-ion irradiation compared with γ-ray irradiation. The p53-relevant apoptosis pathway was activated in both irradiated A549 and Beas-2B cells, each to a different extent. When the p53 pathway of irradiated cells was inhibited by PFT-α, PFTµ or p53 siRNA, the bystander damage to TK6 cells were clearly alleviated. In conclusion, the bystander lymphoblast damage was induced in different cells using different LET radiations. An amplified bystander response was modulated by the intermediator macrophage. The underlying molecular mechanisms of these bystander effects were dependent on the activation of p53 and its relevant apoptosis pathway in the irradiated cells. These results suggest that the bystander and macrophage-mediated bystander effects contribute to the common acute side effect of lymphocytopenia after local irradiation.
Collapse
Affiliation(s)
- Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China.,Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Suzuki M, Yasuda N, Kitamura H. Lethal and mutagenic bystander effects in human fibroblast cell cultures subjected to low-energy-carbon ions. Int J Radiat Biol 2019; 96:179-186. [PMID: 31633439 DOI: 10.1080/09553002.2020.1683637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We studied lethal and mutagenic bystander effects in normal human fibroblasts irradiated with low-energy-carbon ions.Materials and methods: After cells reached confluence, cells were irradiated with initial energies of 6 MeV/n carbon ions. The residual energy and LET value were 4.6 MeV/n and 309 keV/µm. The doses used for survival and mutational studies were 0.082 and 0.16 Gy. Irradiation was carried out using 4 different irradiation conditions and plating conditions: (1) The entire cell area on the Mylar film was irradiated (We abbreviate as 'all irradiation'); (2) Irradiated and unirradiated cells were pooled in a 1:1 ratio and plated as a single culture until the plating for lethal and mutagenic experiments (We abbreviate as 'mixed population'); (3) Only half of the area on the Mylar film were irradiated using an ion-beam stopper (We abbreviate as 'half irradiation'); and (4) Only half of the area of the cells were irradiated, and a specific inhibitor of gap junctions was added to the culture (We abbreviate as 'half irradiation with inhibitor'). Cell samples were analyzed for lethal and mutagenic bystander effects, including a PCR evaluation of the mutation spectrum.Results: The surviving fraction of all irradiation was the same as the half irradiation case. The surviving fractions of both mixed population and the half irradiation with inhibitor were the same level and higher than those of all irradiation and half irradiation. The mutation frequencies at the HPRT (the hypoxanthine-guanine phosphoribosyl transferase) locus of all irradiation and half irradiation were at the same level and were higher than those of mixed population and half irradiation with inhibitor, respectively.Conclusion: There is evidence that the bystander effects for both lethality and mutagenicity occurred in the unirradiated half of the cells, in which only half of the cells were irradiated with the carbon ions. These results suggest that the bystander cellular effects via gap-junction-mediated cell-cell communication are induced by high-LET-carbon ions.
Collapse
Affiliation(s)
- Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nakahiro Yasuda
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Japan
| | - Hisashi Kitamura
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Heavy-Ion Microbeams for Biological Science: Development of System and Utilization for Biological Experiments in QST-Takasaki. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3020013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Target irradiation of biological material with a heavy-ion microbeam is a useful means to analyze the mechanisms underlying the effects of heavy-ion irradiation on cells and individuals. At QST-Takasaki, there are two heavy-ion microbeam systems, one using beam collimation and the other beam focusing. They are installed on the vertical beam lines of the azimuthally-varying-field cyclotron of the TIARA facility for analyzing heavy-ion radiation effects on biological samples. The collimating heavy-ion microbeam system is used in a wide range of biological research not only in regard to cultured cells but also small individuals, such as silkworms, nematode C. elegans, and medaka fish. The focusing microbeam system was designed and developed to perform more precise target irradiation that cannot be achieved through collimation. This review describes recent updates of the collimating heavy ion microbeam system and the research performed using it. In addition, a brief outline of the focusing microbeam system and current development status is described.
Collapse
|
7
|
Chadwick KH. Non-targeted effects and radiation-induced cancer. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:1011-1014. [PMID: 27893435 DOI: 10.1088/0952-4746/36/4/1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
8
|
Matsumoto Y, Hamada N, Aoki-Nakano M, Funayama T, Sakashita T, Wada S, Kakizaki T, Kobayashi Y, Furusawa Y. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts. RADIATION PROTECTION DOSIMETRY 2015; 166:152-156. [PMID: 26242975 DOI: 10.1093/rpd/ncv177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV µm(-1)), neon (375 keV µm(-1)) and argon ions (1260 keV µm(-1)) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1-6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan Present Address: Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Mizuho Aoki-Nakano
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tetsuya Sakashita
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Seiichi Wada
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Takehiko Kakizaki
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology. RADIATION PROTECTION DOSIMETRY 2015; 166:182-187. [PMID: 25911406 DOI: 10.1093/rpd/ncv192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology.
Collapse
Affiliation(s)
- P Barberet
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| | - H Seznec
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| |
Collapse
|
10
|
Tomita M, Matsumoto H, Funayama T, Yokota Y, Otsuka K, Maeda M, Kobayashi Y. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:36-43. [PMID: 26256626 DOI: 10.1016/j.lssr.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan.
| | - Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuichiro Yokota
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan; Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
11
|
Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. JOURNAL OF RADIATION RESEARCH 2015; 56:502-8. [PMID: 25805407 PMCID: PMC4426929 DOI: 10.1093/jrr/rrv005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA Present address: Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Sonia M De Toledo
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Kaźmierczak U, Banaś D, Braziewicz J, Buraczewska I, Czub J, Jaskóła M, Kaźmierczak Ł, Korman A, Kruszewski M, Lankoff A, Lisowska H, Nesteruk M, Szefliński Z, Wojewódzka M. Investigation of the bystander effect in CHO-K1 cells. Rep Pract Oncol Radiother 2014; 19:S37-S41. [PMID: 28443197 DOI: 10.1016/j.rpor.2014.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/26/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
AIM Investigation of the bystander effect in Chinese Hamster Ovary cells (CHO-K1) co-cultured with cells irradiated in the dose range of 0.1-4 Gy of high LET 12C ions and X-rays. BACKGROUND The radiobiological effects of charged heavy particles on a cellular or molecular level are of fundamental importance in the field of biomedical applications, especially in hadron therapy and space radiation biology. MATERIALS AND METHODS A heavy ion 12C beam from the Heavy Ion Laboratory of the University of Warsaw (HIL) was used to irradiate CHO-K1 cells. Cells were seeded in Petri dishes specially designed for irradiation purposes. Immediately after irradiation, cells were transferred into transwell culture insert dishes to enable co-culture of irradiated and non-irradiated cells. Cells from the membrane and well shared the medium but could not touch each other. To study bystander effects, a clonogenic survival assay was performed. RESULTS The survival fraction of cells co-cultured with cells irradiated with 12C ions and X-rays was not reduced. CONCLUSIONS The bystander effect was not observed in these studies.
Collapse
Affiliation(s)
- Urszula Kaźmierczak
- Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
| | - Dariusz Banaś
- Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
- Holycross Cancer Center, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Janusz Braziewicz
- Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
- Holycross Cancer Center, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Iwona Buraczewska
- Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw, Poland
| | - Joanna Czub
- Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Marian Jaskóła
- National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland
| | - Łukasz Kaźmierczak
- National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland
| | - Andrzej Korman
- National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw, Poland
- Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw, Poland
- Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Halina Lisowska
- Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Marta Nesteruk
- Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
| | - Zygmunt Szefliński
- Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warsaw, Poland
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
13
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
14
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
15
|
Suzuki K, Yamashita S. Radiation-Induced Bystander Response: Mechanism and Clinical Implications. Adv Wound Care (New Rochelle) 2014; 3:16-24. [PMID: 24761341 DOI: 10.1089/wound.2013.0468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023] Open
Abstract
Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
17
|
Gonon G, Groetz JE, de Toledo SM, Howell RW, Fromm M, Azzam EI. Nontargeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations. Radiat Res 2013; 179:444-57. [PMID: 23465079 DOI: 10.1667/rr3017.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/μm] or 600 MeV/u silicon ions (LET ∼50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1-3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21(Waf1) (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ∼109 keV/μm) that targets ∼1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ∼13 keV/μm) by which, on average, ∼13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles.
Collapse
Affiliation(s)
- Géraldine Gonon
- Department of Radiology, UMDNJ - New Jersey Medical School Cancer Center, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mothersill C, Antonelli F, Dahle J, Dini V, Hegyesi H, Iliakis G, Kämäräinen K, Launonen V, Lumniczky K, Lyng F, Safrany G, Salomaa S, Schilling-Tóth B, Tabocchini A, Kadhim MA. A laboratory inter-comparison of the importance of serum serotonin levels in the measurement of a range of radiation-induced bystander effects: overview of study and results presentation. Int J Radiat Biol 2012; 88:763-9. [PMID: 22891994 DOI: 10.3109/09553002.2012.715795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Recent research has suggested that serotonin may play an important role in the expression of radiation-induced bystander effects. Serotonin levels in serum were reported to range from 6-22 μM and to correlate inversely with the magnitude of cellular colony-forming ability in medium transfer bystander assays. That is, high serotonin concentration correlated with a low cloning efficiency in cultures receiving medium derived from irradiated cells. METHODS Because of the potential importance of this observation, the European Union's Non-targeted Effects Integrated Project (NOTE) performed an inter-comparison exercise where serum samples with high and low serotonin levels were distributed to seven laboratories which then performed their own assay to determine the magnitude of the bystander effect. RESULTS The results provided some support for a role for serotonin in four of the laboratories. Two saw no difference between the samples and one gave inconclusive results. In this summary paper, full data sets are presented from laboratories whose data was inconclusive or insufficient for a full paper. Other data are published in full in the special issue. CONCLUSION The data suggest that there may be multiple bystander effects and that the underlying mechanisms may be modulated by both the culture conditions and the intrinsic properties of the cells used in the assay.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dickey JS, Baird BJ, Redon CE, Avdoshina V, Palchik G, Wu J, Kondratyev A, Bonner WM, Martin OA. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity. Nucleic Acids Res 2012; 40:10274-86. [PMID: 22941641 PMCID: PMC3488239 DOI: 10.1093/nar/gks795] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20952, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kalanxhi E, Dahle J. The role of serotonin and p53 status in the radiation-induced bystander effect. Int J Radiat Biol 2012; 88:773-6. [DOI: 10.3109/09553002.2012.711919] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Mariotti LG, Bertolotti A, Ranza E, Babini G, Ottolenghi A. Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers. Int J Radiat Biol 2012; 88:751-62. [PMID: 22709338 DOI: 10.3109/09553002.2012.703365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the mechanisms regulating the pathways of the bystander transmission in vitro, focusing on the radiation-perturbed signalling (via Interleukine 6, IL-6) of the irradiated cells after exposure to low doses of different radiation types. MATERIALS AND METHODS An integrated 'systems radiation biology' approach was adopted. Experimentally the level of the secreted cytokine from human fibroblasts was detected with ELISA (Enzyme-Linked ImmunoSorbent Assay) method and subsequently the data were analyzed and coupled with a phenomenological model based on differential equations to evaluate the single-cell release mechanisms. RESULTS The data confirmed the important effect of radiation on the IL-6 pathway, clearly showing a crucial role of the ROS (Reactive Oxygen Species) in transducing the effect of initial radiation exposure and the subsequent long-term release of IL-6. Furthermore, a systematic investigation of radiation dose/radiation quality dependence seems to indicate an increasing efficiency of high LET (Linear Energy Transfer) irradiation in the release of the cytokine. Basic hypotheses were tested, on the correlation between direct radiobiological damage and signal release and on the radiation target for this endpoint (secretion of IL-6). CONCLUSIONS The results demonstrate the role of reactive oxygen and nitrogen species in the signaling pathways of IL-6. Furthermore the systems radiation biology approach here adopted, allowed us to test and verify hypotheses on the behavior of the single cell in the release of cytokine, after the exposure to different doses and different qualities of ionizing radiation.
Collapse
Affiliation(s)
- Luca G Mariotti
- Department of Physics, University of Pavia, Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy.
| | | | | | | | | |
Collapse
|
22
|
Kalanxhi E, Dahle J. Transcriptional responses in irradiated and bystander fibroblasts after low dose α-particle radiation. Int J Radiat Biol 2012; 88:713-9. [DOI: 10.3109/09553002.2012.704657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Vinnikov V, Lloyd D, Finnon P. Bystander apoptosis in human cells mediated by irradiated blood plasma. Mutat Res 2012; 731:107-116. [PMID: 22230196 DOI: 10.1016/j.mrfmmm.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 10/11/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.
Collapse
|
24
|
MotherSill C, Seymour C. Changing paradigms in radiobiology. Mutat Res 2012; 750:85-95. [PMID: 22273762 DOI: 10.1016/j.mrrev.2011.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
The last 25 years have seen a major shift in emphasis in the field of radiobiology from a DNA-centric view of how radiation damage occurs to a much more biological view that appreciates the importance of macro-and micro-environments, hierarchical organization, underlying genetics, evolution, adaptation and signaling at all levels from atoms to ecosystems. The new view incorporates concepts of hormesis, nonlinear systems, bioenergy field theory, uncertainty and homeodynamics. While the mechanisms underlying these effects and responses are still far from clear, it is very apparent that their implications are much wider than the field of radiobiology. This reflection discusses the changing views and considers how they are influencing thought in environmental and medical science and systems biology.
Collapse
Affiliation(s)
- Carmel MotherSill
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Colin Seymour
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
25
|
Blyth BJ, Sykes PJ. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 2011; 176:139-57. [PMID: 21631286 DOI: 10.1667/rr2548.1] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The term radiation-induced bystander effect is used to describe radiation-induced biological changes that manifest in unirradiated cells remaining within an irradiated cell population. Despite their failure to fit into the framework of classical radiobiology, radiation-induced bystander effects have entered the mainstream and have become established in the radiobiology vocabulary as a bona fide radiation response. However, there is still no consensus on a precise definition of radiation-induced bystander effects, which currently encompasses a number of distinct signal-mediated effects. These effects are classified here into three classes: bystander effects, abscopal effects and cohort effects. In this review, the data have been evaluated to define, where possible, various features specific to radiation-induced bystander effects, including their timing, range, potency and dependence on dose, dose rate, radiation quality and cell type. The weight of evidence supporting these defining features is discussed in the context of bystander experimental systems that closely replicate realistic human exposure scenarios. Whether the manifestation of bystander effects in vivo is intrinsically limited to particular radiation exposure scenarios is considered. The conditions under which radiation-induced bystander effects are induced in vivo will ultimately determine their impact on radiation-induced carcinogenic risk.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
26
|
Sowa MB, Goetz W, Baulch JE, Lewis AJ, Morgan WF. No evidence for a low linear energy transfer adaptive response in irradiated RKO cells. RADIATION PROTECTION DOSIMETRY 2011; 143:311-314. [PMID: 21216730 DOI: 10.1093/rpd/ncq487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has become increasingly evident from reports in the literature that there are many confounding factors capable of modulating radiation-induced non-targeted responses, such as the bystander effect and the adaptive response. In this paper, we examine recent data which suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low-linear energy transfer exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.
Collapse
Affiliation(s)
- M B Sowa
- Cell Biology and Biochemistry, Pacific Northwest National Laboratory, PO BOX 999, MS J4-02, Richland, WA 99354, USA.
| | | | | | | | | |
Collapse
|
27
|
Cherubini R, De Nadal V, Gerardi S, Guryev D. Lack of hyper-radiosensitivity and induced radioresistance and of bystander effect in V79 cells after proton irradiation of different energies. RADIATION PROTECTION DOSIMETRY 2011; 143:315-319. [PMID: 21113063 DOI: 10.1093/rpd/ncq406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A huge body of evidence about the hyper-radiosensitivity and induced radioresistance (HRS/IRR) phenomena and the bystander effect (BE) is reported in the literature, in many cell types and in terms of various biological endpoints, after high- and low-linear energy transfer irradiation. However, the mechanisms underlying these effects together with their inter-relationship, and the correlation of HRS/IRR and BE phenomena with radiation quality are not yet well established and elucidated. To study these phenomena, the radiation response of V79 cells has been evaluated in terms of cell survival after irradiation with broad beams of 7.7- and 28.5-keV μm(-1) protons. HRS/IRR has been investigated also in terms of micronuclei and chromosomal aberration induction. The presence of BE has been investigated with a 'partial shielding irradiation' system, which prevents the irradiation of 35 % (on average) of the cell population. No clear evidence of HRS/IRR, nor of a significant BE response, can be identified in the low-dose region of V79 dose-response curves after proton irradiation of different energies.
Collapse
Affiliation(s)
- R Cherubini
- Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'Università 2, 35020 Legnaro, Padova, Italy
| | | | | | | |
Collapse
|
28
|
Ojima M, Furutani A, Ban N, Kai M. Persistence of DNA Double-Strand Breaks in Normal Human Cells Induced by Radiation-Induced Bystander Effect. Radiat Res 2011; 175:90-6. [DOI: 10.1667/rr2223.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Sokolov MV, Neumann RD. Radiation-induced bystander effects in cultured human stem cells. PLoS One 2010; 5:e14195. [PMID: 21152027 PMCID: PMC2996280 DOI: 10.1371/journal.pone.0014195] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/09/2010] [Indexed: 01/06/2023] Open
Abstract
Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
30
|
Mariotti L, Facoetti A, Alloni D, Bertolotti A, Ranza E, Ottolenghi A. Effects of ionizing radiation on cell-to-cell communication. Radiat Res 2010; 174:280-9. [PMID: 20726722 DOI: 10.1667/rr1889.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cell-to-cell signaling has become a significant issue in radiation biology due to experimental evidence, accumulated primarily since the early 1990s, of radiation-induced bystander effects. Several candidate mediators involved in cell-to-cell communication have been investigated and proposed as being responsible for this phenomenon, but the current investigation techniques (both theoretical and experimental) of the mechanisms involved, due to the particular set-up of each experiment, result in experimental data that often are not directly comparable. In this study, a comprehensive approach was adopted to describe cell-to-cell communication (focusing on cytokine signaling) and its modulation by external agents such as ionizing radiation. The aim was also to provide integrated theoretical instruments and experimental data to help in understanding the peculiarities of in vitro experiments. Theoretical/modeling activities were integrated with experimental measurements by (1) redesigning a cybernetic model (proposed in its original form in the 1950s) to frame cell-to-cell communication processes, (2) implementing and developing a mathematical model, and (3) designing and carrying out experiments to quantify key parameters involved in intercellular signaling (focusing as a pilot study on the release and decay of IL-6 molecules and their modulation by radiation). This formalization provides an interpretative framework for understanding the intercellular signaling and in particular for focusing on the study of cell-to-cell communication in a "step-by-step" approach. Under this model, the complex phenomenon of signal transmission was reduced where possible into independent processes to investigate them separately, providing an evaluation of the role of cell communication to guarantee and maintain the robustness of the in vitro experimental systems against the effects of perturbations.
Collapse
Affiliation(s)
- Luca Mariotti
- Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Dauer LT, Brooks AL, Hoel DG, Morgan WF, Stram D, Tran P. Review and evaluation of updated research on the health effects associated with low-dose ionising radiation. RADIATION PROTECTION DOSIMETRY 2010; 140:103-136. [PMID: 20413418 DOI: 10.1093/rpd/ncq141] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While radiation health risks at low doses have traditionally been estimated from high-dose studies, we have reviewed recent literature and concluded that the mechanisms of action for many biological endpoints may be different at low doses from those observed at high doses; that acute doses <100 mSv may be too small to allow epidemiological detection of excess cancers given the background of naturally occurring cancers; that low-dose radiation research should use holistic approaches such as systems-based methods to develop models that define the shape of the dose-response relationship; and that these results should be combined with the latest epidemiology to produce a comprehensive understanding of radiation effects that addresses both damage, likely with a linear effect, and response, possibly with non-linear consequences. Continued research is needed to understand how radiobiology and epidemiology advances should be used to effectively model radiation worker risks.
Collapse
Affiliation(s)
- Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Terzoudi GI, Donta-Bakoyianni C, Iliakis G, Pantelias GE. Investigation of bystander effects in hybrid cells by means of cell fusion and premature chromosome condensation induction. Radiat Res 2010; 173:789-801. [PMID: 20518658 DOI: 10.1667/rr2023.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The established dogma in radiation sciences that underlies radiation protection and therapeutic applications is that radiation effects require induction of DNA damage only in cells that are directly hit by the radiation. However, extensive work during the last decade demonstrates that DNA damage responses can be detected in cells that are only bystanders. Such effects include cell killing and responses associated with DNA and chromosome damage. Here, we developed a strategy for investigating bystander effects on chromosomal integrity by premature chromosome condensation using hybrid cell formation between nontargeted human lymphocytes and targeted CHO cells or vice versa. We reasoned that signaling molecules generated in the targeted component of the hybrid will transfer to the nontargeted cell, inducing damage detectable at the chromosomal level. The results indicate that bystander cytogenetic effects between CHO and human lymphocytes cannot be detected under the experimental conditions used. This may be due either to the lack of communication of such responses between the components of the hybrid or to their abrogation by the experimental manipulations. These observations and the methodology developed should be useful in the further development of protocols for investigating bystander responses and for elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- G I Terzoudi
- Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research Demokritos, Athens, Greece
| | | | | | | |
Collapse
|
33
|
Balduzzi M, Sapora O, Matteucci A, Paradisi S. Modulation of the bystander effects induced by soluble factors in HaCaT cells by different exposure strategies. Radiat Res 2010; 173:779-88. [PMID: 20518657 DOI: 10.1667/rr1835.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this investigation was to explore whether the occurrence and the magnitude of radiation-induced, medium-mediated bystander effects could be influenced by the time of transfer of secreted bystander factors. HaCaT cells were exposed to 0.1 and 1.0 Gy of gamma radiation. These doses did not induce a significant reduction in the clonogenic survival of irradiated cells compared to controls. Bystander cells either were co-cultured with irradiated cells or received medium from irradiated cells. The bystander effects analyzed included end points related to survival (clonogenic potential and cell proliferation) and DNA damage (micronucleus induction and gamma-H2AX formation). The bystander effects we investigated either were lacking or varied from potentially protective to detrimental responses in relation to the dose of radiation and the time between irradiation of donor cells and bystander exposure. Our results suggest that the experimental time schedule is important for both the occurrence and the detection of bystander effects in vitro.
Collapse
Affiliation(s)
- Maria Balduzzi
- Section of Toxicology and Biomedical Sciences, ENEA CR Casaccia, 00123 Rome, Italy.
| | | | | | | |
Collapse
|
34
|
Sowa MB, Goetz W, Baulch JE, Pyles DN, Dziegielewski J, Yovino S, Snyder AR, de Toledo SM, Azzam EI, Morgan WF. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Int J Radiat Biol 2010; 86:102-13. [PMID: 20148696 DOI: 10.3109/09553000903419957] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate radiation-induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. MATERIALS AND METHODS We used medium transfer and targeted irradiation to examine radiation-induced bystander effects in primary human fibroblast (AG01522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10-100 cGy. RESULTS The results showed no evidence of a low-LET radiation-induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor did we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV alpha-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. CONCLUSIONS From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.
Collapse
Affiliation(s)
- Marianne B Sowa
- Molecular and Cellular Biology, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|