1
|
Sharma M, Sarode SC, Sarode G, Radhakrishnan R. Areca nut-induced oral fibrosis - Reassessing the biology of oral submucous fibrosis. J Oral Biosci 2024; 66:320-328. [PMID: 38395254 DOI: 10.1016/j.job.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a pathological condition characterized by excessive tissue healing resulting from physical, chemical, or mechanical trauma. Notably, areca nut consumption significantly contributes to the development of oral fibrosis. The current definition of OSF, recognizing its potential for malignant transformation, necessitates a more comprehensive understanding of its pathophysiology and etiology. HIGHLIGHTS Areca nut induces fibrotic pathways by upregulating inflammatory cytokines such as TGF-β and expressing additional cytokines. Moreover, it triggers the conversion of fibroblasts to myofibroblasts, characterized by α-SMA and γSMA expression, resulting in accelerated collagen production. Arecoline, a component of areca nut, has been shown to elevate levels of reactive oxygen species, upregulate the expression of various cytokines, and activate specific signaling pathways (MEK, COX2, PI3K), all contributing to fibrosis. Therefore, we propose redefining OSF as "Areca nut-induced oral fibrosis" (AIOF) to align with current epistemology, emphasizing its distinctive association with areca nut consumption. The refined definition enhances our ability to develop targeted interventions, thus contributing to more effective prevention and treatment strategies for oral submucous fibrosis worldwide. CONCLUSION Arecoline plays a crucial role as a mediator in fibrosis development, contributing to extracellular matrix accumulation in OSF. The re-evaluation of OSF as AIOF offers a more accurate representation of the condition. This nuanced perspective is essential for distinguishing AIOF from other forms of oral fibrosis and advancing our understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Faculty of Dental Sciences, SGT University, Gurugram, Haryana, 122505, India.
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Gargi Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India; Academic Unit of Oral Medicine and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
2
|
Gou S, Del Río-Sancho S, Laubach HJ, Kalia YN. Erbium:YAG fractional laser ablation improves cutaneous delivery of pentoxifylline from different topical dosage forms. Int J Pharm 2022; 628:122259. [PMID: 36198359 DOI: 10.1016/j.ijpharm.2022.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Topical application of pentoxifylline (PTX) would enable targeted treatment of radiation-induced skin fibrosis. However, PTX is hydrophilic with limited partitioning into the stratum corneum. The objective of this study was to investigate whether use of Erbium:YAG fractional laser ablation and different topical dosage forms (solution, hydrogel and patch) could be used to improve PTX cutaneous delivery as opposed to transdermal permeation. Initial results confirmed that fractional laser ablation significantly increased PTX delivery from each dosage form compared to passive controls. Delivery efficiencies of ∼30% were achieved with each dosage form but a large proportion of PTX permeated across the skin; thus, fluences were decreased to create shallower micropores, their depth being linearly dependent on fluence. The hydrogel was selected as the optimal formulation and PTX delivery efficiencies were further increased (44%-67%) by reducing the amount of hydrogel applied (better mimicking conditions of use). As this resulted in PTX depletion in the formulation, a loss of dependence of delivery on laser fluence was observed. These findings suggest that fractional laser ablation at moderate fluences enables an effective and targeted cutaneous delivery of PTX from a hydrogel formulation, which can be easily produced without the need for complex equipment.
Collapse
Affiliation(s)
- Si Gou
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sergio Del Río-Sancho
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Hans-Joachim Laubach
- Division of Dermatology, Geneva University Hospital, 1205 Geneva, Switzerland; Centre Laser MD, 8 Rue de Londres, 67000 Strasbourg, France
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Niu H, Zhang L, Wang B, Zhang GC, Liu J, Wu ZF, Du SS, Zeng ZC. CircTUBD1 Regulates Radiation-induced Liver Fibrosis Response via a circTUBD1/micro-203a-3p/Smad3 Positive Feedback Loop. J Clin Transl Hepatol 2022; 10:680-691. [PMID: 36062271 PMCID: PMC9396324 DOI: 10.14218/jcth.2021.00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Radiation-induced liver fibrosis (RILF), delayed damage to the liver (post-irradiation) remains a major challenge for the radiotherapy of liver malignancies. This study investigated the potential function and mechanism of circTUBD1 in the development of RILF. METHODS By using a dual luciferase assay, RNA pull-down assays, RNA sequencing, chromatin immunoprecipitation (known as ChIP) assays, and a series of gain- or loss-of-function experiments, it was found that circTUBD1 regulated the activation and fibrosis response of LX-2 cells induced by irradiation via a circTUBD1/micro-203a-3p/Smad3 positive feedback loop in a 3D system. RESULTS Knockdown of circTUBD1 not only reduced the expression of α-SMA, as a marker of LX-2 cell activation, but also significantly decreased the levels of hepatic fibrosis molecules, collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and connective tissue growth factor (CTGF) in a three-dimensional (3D) culture system and RILF model in vivo. Notably, knockdown of circTUBD1 alleviated early liver fibrosis induced by irradiation in mice models. CONCLUSIONS This study is the first to reveal the mechanism and role of circTUBD1 in RILF via a circTUBD1/micro-203a-3p/Smad3 feedback loop, which provides a novel therapeutic strategy for relieving the progression of RILF.
Collapse
Affiliation(s)
- Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Liu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Correspondence to: Zhao-Chong Zeng, Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0003-4330-3688. Tel: +86-21-64041990, Fax: +86-21-6404-8472, E-mail:
| |
Collapse
|
4
|
Chakraborty S, DePalma TJ, Skardal A. Increasing Accuracy of In Vitro Cancer Models: Engineering Stromal Complexity into Tumor Organoid Platforms. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Srija Chakraborty
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Thomas J. DePalma
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Aleksander Skardal
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
- Center for Cancer Engineering The Ohio State University and Arthur G. James Comprehensive Cancer Center Columbus OH 43210 USA
| |
Collapse
|
5
|
Yakavets I, Francois A, Benoit A, Merlin JL, Bezdetnaya L, Vogin G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: optimization study. Sci Rep 2020; 10:21273. [PMID: 33277538 PMCID: PMC7718236 DOI: 10.1038/s41598-020-78087-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced fibrosis (RIF) is the main late radiation toxicity in breast cancer patients. Most of the current 3D in vitro breast cancer models are composed by cancer cells only and are unable to reproduce the complex cellular homeostasis within the tumor microenvironment to study RIF mechanisms. In order to account complex cellular interactions within the tumor microenvironment, an advanced 3D spheroid model, consisting of the luminal breast cancer MCF-7 cells and MRC-5 fibroblasts, was developed. The spheroids were generated using the liquid overlay technique in culture media into 96-well plates previously coated with 1% agarose (m/v, in water). In total, 21 experimental setups were tested during the optimization of the model. The generated spheroids were characterized using fluorescence imaging, immunohistology and immunohistochemistry. The expression of ECM components was confirmed in co-culture spheroids. Using α-SMA staining, we confirmed the differentiation of healthy fibroblasts into myofibroblasts upon the co-culturing with cancer cells. The induction of fibrosis was studied in spheroids treated 24 h with 10 ng/mL TGF-β and/or 2 Gy irradiation. Overall, the developed advanced 3D stroma-rich in vitro model of breast cancer provides a possibility to study fibrosis mechanisms taking into account 3D arrangement of the complex tumor microenvironment.
Collapse
Affiliation(s)
- Ilya Yakavets
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Aurelie Francois
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Alice Benoit
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.
| | - Guillaume Vogin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.,UMR 7365 CNRS-UL, IMoPA, Vandœuvre-lès-Nancy, France.,Centre François Baclesse, Centre National de Radiothérapie du Grand-Duché du Luxembourg, Esch Sur Alzette, Luxembourg
| |
Collapse
|
6
|
Yang X, Ren H, Guo X, Hu C, Fu J. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging (Albany NY) 2020; 12:23379-23393. [PMID: 33202382 PMCID: PMC7746368 DOI: 10.18632/aging.103932] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Radiation-induced skin injury (RSI) refers to a frequently occurring complication of radiation therapy. Nearly 90% of patients having received radiation therapy underwent moderate-to-severe skin reactions, severely reducing patients' quality of life and adversely affecting their disease treatment. No gold standard has been formulated for RSIs. In the present study, the mechanism of RSI and topical medications was discussed. Besides, this study can be referenced for clinicians to treat RSIs to guide subsequent clinical medicine.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
7
|
Cabrera CI, Joseph Jones A, Philleo Parker N, Emily Lynn Blevins A, Weidenbecher MS. Pectoralis Major Onlay vs Interpositional Reconstruction Fistulation After Salvage Total Laryngectomy: Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg 2020; 164:972-983. [PMID: 32988281 DOI: 10.1177/0194599820957962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the difference in pharygocutaneous fistula (PCF) development between pectoralis major flap onlay and interpositional reconstructions after salvage total laryngectomy (STL). DATA SOURCES Medline, Cochrane, Embase, Web of Science, CINAHL, and ClinicalTrials.gov. REVIEW METHODS A systematic review was performed during January 2020. English articles were included that described minor and major PCF rates after STL reconstructed with pectoralis major onlay or interposition. PCFs were classified as major when conservative therapy was unsuccessful and/or revision surgery was needed. Articles describing total laryngopharyngectomies were excluded. Meta-analyses of the resulting data were performed. RESULTS Twenty-four articles met final criteria amassing 1304 patients. Three articles compared onlay with interposition, and 18 compared onlay with primary closure. Pectoralis interposition demonstrated elevated odds ratio (OR) of PCF formation as compared with onlay (OR, 2.34; P < .001). Onlay reconstruction reduced overall (OR, 0.32; P < .001) and major (OR, 0.21; P < .001) PCF development as compared with primary pharyngeal closure alone. Data were insufficient to compare interposition against primary closure. CONCLUSIONS This research shows evidence that pectoralis onlay after STL diminishes the odds of total and major PCF development. Pectoralis interposition reconstruction showed elevated odds of PCF formation as compared with pectoralis onlay.
Collapse
Affiliation(s)
- Claudia I Cabrera
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Alexander Joseph Jones
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Noah Philleo Parker
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amy Emily Lynn Blevins
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mark S Weidenbecher
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Otolaryngology-Head and Neck Surgery, MetroHealth Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Li J, Wang W. Positive effect of pentoxifylline on medication-related osteonecrosis of the jaw. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:264-267. [DOI: 10.1016/j.jormas.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
|
9
|
Gou S, Del Rio-Sancho S, Singhal M, Laubach HJ, Kalia YN. Er:YAG fractional laser ablation for cutaneous co-delivery of pentoxifylline and d-α-tocopherol succinate: A new approach for topical treatment of radiation-induced skin fibrosis. Eur J Pharm Sci 2019; 135:22-31. [PMID: 31078643 DOI: 10.1016/j.ejps.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Radiation induced fibrosis is a common side-effect after radiotherapy. Pentoxifylline is reported to reverse radiation injuries when used in conjunction with D-α-tocopherol. However, pentoxifylline has a short half-life, limited oral bioavailability, and induces several systemic adverse effects. The objective of this study was to investigate the feasibility of using Er:YAG fractional laser ablation to enable simultaneous cutaneous delivery of pentoxifylline and D- α -tocopherol succinate from poly(lactide-co-glycolide) microparticles prepared using the freeze-fracture technique. In vitro release experiments demonstrated the different release profiles of the two molecules, which were influenced by their very different lipophilicities and aqueous solubilities. Experiments were then performed to investigate the effect of laser fluence on pore depth and so determine the pore volume available to host the topically applied microparticles. Application of the pentoxifylline and D-α-tocopherol succinate containing microparticles, prepared with RESOMER® RG 502H, to laser porated skin for 48 h, resulted in simultaneous delivery of pentoxifylline (69.63 ± 6.41 μg/cm2; delivery efficiency 46.4%) and D-α-tocopherol succinate (33.25 ± 8.91 μg/cm2; delivery efficiency 22.2%). After deposition into the micropores, the poly(lactide-co-glycolide) microparticles containing pentoxifylline and D-α-tocopherol succinate could serve as an intraepidermal depot to enable sustained drug delivery after micropore closure and thereby reduce the need for repeated microporation.
Collapse
Affiliation(s)
- Si Gou
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Sergio Del Rio-Sancho
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Mayank Singhal
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Hans-Joachim Laubach
- Division of Dermatology, Geneva University Hospital, 1205 Geneva, Switzerland; Centre Laser MD, 8 Rue de Londres, 67000 Strasbourg, France
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland.
| |
Collapse
|