1
|
Carpenter AD, Empfield KM, Petrus SA, Fatanmi OO, Wise SY, Tyburski JB, Cheema AK, Singh VK. Metabolomic changes in preterminal serum samples of rhesus macaques exposed to two different lethal doses of total-body gamma-radiation. Sci Rep 2024; 14:23930. [PMID: 39397118 PMCID: PMC11471850 DOI: 10.1038/s41598-024-75225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Exposure to ionizing radiation induces cellular and molecular damage leading to a cascade of events resulting in tissue and organ injury. Our study strives to characterize and validate metabolomic changes in preterminal stage (immediately prior to death) samples collected from rhesus macaques lethally irradiated with one of two different doses of radiation. Peripheral blood samples were collected pre-exposure, post-exposure, and at the preterminal stage of nonhuman primates (NHPs that did not survive exposure with 7.2 Gy or 7.6 Gy total-body radiation (LD60-80/60)). We analyzed global metabolomic alterations using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples collected at various timepoints in relation to radiation exposure. The goal of this study was to validate the metabolic shifts present in samples collected just prior to death, which were reported earlier in a preliminary study with a limited number of samples and a single dose of radiation. Here, we demonstrate that radiation exposure induced significant time-dependent metabolic alterations compared with pre-exposure samples. We observed significant metabolite dysregulation in animals exposed to 7.6 Gy compared to 7.2 Gy. Greater metabolic disruption was observed in the preterminal groups than all of the other post-irradiation timepoints in both cohorts. Metabolomic shifts in these preterminal groups also revealed consistent disturbances in sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism pathways. Overall, the sphingolipid metabolism pathway appears to be representative of the preterminal phenotype, confirming the results of our preliminary study. These results offer important and novel insights for identification and validation of biomarkers for lethality, and such observations would be valuable for triage during a radiological/nuclear mass casualty scenario.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Keirstyn M Empfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Abend M, Ostheim P, Port M. Radiation-Induced Gene Expression Changes Used for Biodosimetry and Clinical Outcome Prediction: Challenges and Promises. Cytogenet Genome Res 2023; 163:223-230. [PMID: 37231879 DOI: 10.1159/000530947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
As the war in Ukraine progresses, the radiological and nuclear threat has never been as real as now. The formation of life-threatening acute radiation syndrome (ARS), in particular after the deployment of a nuclear weapon or an attack on a nuclear power station, must be considered realistic. ARS is caused by massive cell death, leading to functional organ deficits and, via systemic inflammatory responses, finally aggravates into multiple organ failure. As a deterministic effect, the severity of the disease dictates the clinical outcome. Hence, predicting ARS severity via biodosimetry or alternative approaches appears straightforward. Because the disease occurs delayed, therapy starting as early as possible has the most significant benefit. A clinically relevant diagnosis should be carried out within the diagnostic time window of about 3 days after exposure. Biodosimetry assays providing retrospective dose estimations within this time frame will support medical management decision-making. However, how closely can dose estimates be associated with the later developing ARS severity degrees when considering dose as one among other determinants of radiation exposure and cell death? From a clinical/triage point of view, ARS severity degrees can be further aggregated into unexposed, weakly diseased (no acute health effects expected), and strongly diseased patient groups, with the latter requiring hospitalization as well as an early and intensive treatment. Radiation-induced gene expression (GE) changes occur early after exposure and can be quickly quantified. GE can be used for biodosimetry purposes. Can GE be used to predict later developing ARS severity degrees and allocate individuals to the three clinically relevant groups as well?
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
4
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
5
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
6
|
Lebaron-Jacobs L, Herrera-Reyes E. The METREPOL criteria-are they still relevant? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:014003. [PMID: 34801995 DOI: 10.1088/1361-6498/ac3bc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The medical management of radiation accidents manual on the acute radiation syndrome proposed a successful strategic approach to diagnosing and treating acute radiation syndrome: the response category concept. Based on clinical and laboratory parameters, this approach aimed to assess damage to critical organ systems as a function of time, categorising different therapeutical approaches. After 20 years of its publication, the following paper attempts to provide a broad overview of this important document and tries to respond if proposed criteria are still relevant for the medical management of radiation-induced injuries. In addition, a critical analysis of its limitations and perspectives is proposed.
Collapse
Affiliation(s)
- Laurence Lebaron-Jacobs
- Fundamental Research Division at the French Atomic Energy Commission (CEA), Cadarache, Saint Paul Les Durance, France
| | - Eduardo Herrera-Reyes
- Health Division at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
8
|
Lamkowski A, Combs SE, Abend M, Port M. Training of clinical triage of acute radiation casualties: a performance comparison of on-siteversus onlinetraining due to the covid-19 pandemic. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S540-S560. [PMID: 34256358 DOI: 10.1088/1361-6498/ac13c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A collection of powerful diagnostic tools have been developed under the umbrellas of NATO for ionising radiation dose assessment (BAT, WinFRAT) and estimate of acute health effects in humans (WinFRAT, H-Module). We assembled a database of 191 ARS cases using the medical treatment protocols for radiation accident victims (n= 167) and the system for evaluation and archiving of radiation accidents based on case histories (n= 24) for training purposes of medical personnel. From 2016 to 2019, we trained 39 participants comprising MSc level radiobiology students in an on-site teaching class. Enforced by the covid-19 pandemic in 2020 for the first time, an online teaching of nine MSc radiobiology students replaced the on-site teaching. We found that: (a) limitations of correct diagnostic decision-making based on clinical signs and symptoms were experienced unrelated to the teaching format. (b) A significant performance decrease concerning online (first number in parenthesis) versus on-site teaching (reference and second number in parenthesis) was seen regarding the estimate time (31 vs 61 cases per hour, two-fold decrease,p= 0.005). Also, the accurate assessment of response categories (89.9% vs 96.9%,p= 0.001), ARS (92.4% vs 96.7%,p= 0.002) and hospitalisation (93.5% vs 97.0%,p= 0.002) decreased by around 3%-7%. The performances of the online attendees were mainly distributed within the lower quartile performance of on-site participants and the 25%-75% interquartile range increased 3-7-fold. (c) Comparison of dose estimates performed by training participants with hematologic acute radiation syndrome (HARS) severity mirrored the known limitations of dose alone as a surrogate parameter for HARS severity at doses less than 1.5 Gy, but demonstrated correct determination of HARS 2-4 and support for clinical decision making at dose estimates >1.5 Gy, regardless of teaching format. (d) Overall, one-third of the online participants showed substantial misapprehension and insecurities of elementary course content that did not occur after the on-site teaching.
Collapse
Affiliation(s)
- Andreas Lamkowski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Ingolstaedter Landstr. 1 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
9
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 PMCID: PMC11552548 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Canada
- CytoGnomix Inc, London, Canada
| | | | - Gayle E. Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA
- Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L. Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
10
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
11
|
Xi C, Zhao H, Lu X, Cai TJ, Li S, Liu KH, Tian M, Liu QJ. Screening of Lipids for Early Triage and Dose Estimation after Acute Radiation Exposure in Rat Plasma Based on Targeted Lipidomics Analysis. J Proteome Res 2020; 20:576-590. [PMID: 33200940 DOI: 10.1021/acs.jproteome.0c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid early triage and dose estimation is vital for limited medical resource allocation and treatment of a large number of the wounded after radiological accidents. Lipidomics has been utilized to delineate biofluid lipid signatures after irradiation. Here, high-coverage targeted lipidomics was employed to screen radiosensitive lipids after 0, 1, 2, 3, 5, and 8 Gy total body irradiation at 4, 24, and 72 h postirradiation in rat plasma. Ultra-performance liquid chromatography-tandem mass spectrometry with a multiple reaction monitoring method was utilized. In total, 416 individual lipids from 18 major classes were quantified and those biomarkers altered in a dose-dependent manner constituted panel A-panel D. Receiver operator characteristic curve analysis using combined lipids showed good to excellent sensitivity and specificity in triaging different radiation exposure levels (area under curve = 0.814-1.000). The equations for dose estimation were established by stepwise regression analysis for three time points. A novel strategy for radiation early triage and dose estimation was first established and validated using panels of lipids. Our study suggests that it is feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage, which can provide further insights in developing lipidomics strategies for radiation biodosimetry in humans.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| |
Collapse
|
12
|
Wang B, Dong J, Xiao H, Li Y, Jin Y, Cui M, Zhang SQ, Fan SJ. Metformin fights against radiation-induced early developmental toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139274. [PMID: 32438158 DOI: 10.1016/j.scitotenv.2020.139274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nuclear pollution intertwined accidental irradiation not only triggers acute and chronic radiation syndromes, but also endangers embryonic development in sight of uncontrollable gene mutation. Metformin (MET), a classic hypoglycemic drug, has been identified to possess multiple properties. In this study, we explored the radioprotective effects of MET on the developmental abnormalities and deformities induced by irradiation among three "star drugs". Specifically, zebrafish (Danio rerio) embryos exposed to 5.2 Gy gamma irradiation at 4 h post fertilization (hpf) showed overt developmental toxicity, including hatching delay, hatching rate decrease, developmental indexes reduction, morphological abnormalities occurrence and motor ability decline. However, MET treatment erased the radiation-induced phenotypes. In addition, MET degraded inflammatory reaction, hinders apoptosis response, and reprograms the development-related genes expression, such as sox2, sox3, sox19a and p53, in zebrafish embryos following radiation challenge. Together, our findings provide novel insights into metformin, and underpin that metformin might be employed as a promising radioprotector for radiation-induced early developmental toxicity in pre-clinical settings.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
13
|
Qian L, Cen J. Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| |
Collapse
|
14
|
Haupt J, Ostheim P, Port M, Abend M. USING DICENTRIC DOSE ESTIMATES AND EARLY RADIATION-INDUCED BLOOD CELL COUNT CHANGES OF REAL CASE HISTORIES FOR VALIDATION OF THE HEMODOSE BIODOSIMETRY TOOL. RADIATION PROTECTION DOSIMETRY 2020; 189:428-435. [PMID: 32391564 DOI: 10.1093/rpd/ncaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
HemoDose is a software tool, which estimates absorbed doses based on blood cell counts (BCC). The aim of our study was to validate HemoDose for early dose estimates. Dose estimates generated by HemoDose were compared with dose estimates stored in SEARCH from radiation victims. Moreover, BCC from unirradiated donors and corresponding HemoDose dose estimates were analysed. We employed linear or logistic regression analysis. There was a significant correlation between calculated doses by HemoDose based on single and multiple lymphocyte counts when omitting lowest and highest dose estimates. Furthermore, there was a significant correlation between calculated doses by HemoDose based on lymphocyte counts and the estimated doses based on DIC. The dose estimates by HemoDose based on lymphocyte counts and DIC showed a comparable correlation with HARS degrees 0 and 4. In conclusion, HemoDose dose estimation based on early lymphocyte counts appears to be a promising biodosimetry tool under certain considerations.
Collapse
Affiliation(s)
- Julian Haupt
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
15
|
Port M, Majewski M, Abend M. RADIATION DOSE IS OF LIMITED CLINICAL USEFULNESS IN PERSONS WITH ACUTE RADIATION SYNDROME. RADIATION PROTECTION DOSIMETRY 2019; 186:126-129. [PMID: 31330030 DOI: 10.1093/rpd/ncz058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 06/10/2023]
Abstract
The relation of radiation exposure (dose) with acute radiation syndrome (ARS) depends on many factors. In this overview, we reconsider (1) radiation exposure characteristics (e.g. radiation quality, fractionation, dose rate, partial/total body irradiation) and (2) biological processes (e.g. radiosensitivity, cell cycle dependency, oxygenation) affecting acute health effects after exposure. Furthermore we include evidence from recently published work that examined the relationship of absorbed dose and risk of clinically relevant ARS in persons exposed after a radiation accident. We introduce the concept of radiation-related bioindicators for effect prediction. Bioindicators are considered here to be factors that integrate multiple radiation exposure characteristics and cell- and molecular-based processes to improve clinical prediction in persons with ARS.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
16
|
Abend M, Port M. CONTRIBUTION OF BIODOSIMETRY TO DIFFERENT MEDICAL ISSUES. RADIATION PROTECTION DOSIMETRY 2019; 186:123-125. [PMID: 30576526 DOI: 10.1093/rpd/ncy278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Biodosimetry is a well-established field in science as well as diagnostics and is essential in various areas of application such as dose reconstruction after an accidental radiation exposure. However, depending on the medical issue the purpose of biodosimetry might differ. In this presentation, we will discuss about the contribution of biodosimetry regarding three medical subjects such as (i) diagnosis of acute effects after ionising radiation (Acute Radiation Syndrome), (ii) impact in the field of conventional and molecular epidemiology and (iii) occupational medicine.
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
17
|
Bolduc DL, Blakely WF, H Olsen C, Agay D, Mestries JC, Drouet M, Hérodin F. BABOON RADIATION QUALITY (MIXED-FIELD NEUTRON AND GAMMA, GAMMA ALONE) DOSE-RESPONSE MODEL SYSTEMS: ASSESSMENT OF H-ARS SEVERITY USING HAEMATOLOGIC BIOMARKERS. RADIATION PROTECTION DOSIMETRY 2019; 186:15-23. [PMID: 31330012 DOI: 10.1093/rpd/ncz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/24/2019] [Indexed: 06/10/2023]
Abstract
Results from archived (1986 and 1996) experiments were used to establish a baboon radiation-quality dose-response database with haematology biomarker time-course data following exposure to mixed-fields (i.e. neutron to gamma ratio: 5.5; dose: 0-8 Gy) and 60Co gamma-ray exposures (0-15 Gy). Time-course (i.e. 0-40 d) haematology changes for relevant blood-cell types for both mixed-field (neutron to gamma ratio = 5.5) and gamma ray alone were compared and models developed that showed significant differences using the maximum likehood ratio test. A consensus METREPOL-like haematology ARS (H-ARS) severity scoring system for baboons was established using these results. The data for mixed-field and the gamma only cohorts appeared similar, and so the cohorts were pooled into a single consensus H-ARS severity scoring system. These findings provide proof-of-concept for the use of a METREPOL H-ARS severity scoring system following mixed-field and gamma exposures.
Collapse
Affiliation(s)
- David L Bolduc
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, Scientific Research Department, Bethesda, MD, USA
| | - William F Blakely
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, Scientific Research Department, Bethesda, MD, USA
| | - Cara H Olsen
- Uniformed Services University of the Health Sciences, Preventive Medicine and Biostatistics Department, Bethesda, MD, USA
| | - Diane Agay
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Jean-Claude Mestries
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Michel Drouet
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Francis Hérodin
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| |
Collapse
|
18
|
Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, Abend M. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat Res 2019; 192:208-218. [PMID: 31211643 DOI: 10.1667/rr15360.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g., >2 Gy and depending on host characteristics, may develop severe hematological acute radiation syndrome (HARS), requiring hospitalization and treatment. Previously, we identified a set of genes that discriminated these clinically relevant groups. In the current work, we examined the utility of gene expression changes to classify 1,000 split blood samples into HARS severity scores of H0, H1 and H2-4, with the latter indicating likely hospitalization. In several previous radiation dose experiments, we determined that these HARS categories corresponded, respectively, to doses of 0 Gy (unexposed), 0.5 Gy and 5 Gy. The main purpose of this work was to assess the rapidity of blood sample processing using targeted next-generation sequencing (NGS). Peripheral blood samples from two healthy donors were X-ray irradiated in vitro and incubated at 37°C for 24 h. A total of 1,000 samples were evaluated by laboratory personnel blinded to the radiation dose. Changes in gene expression of FDXR, DDB2, POU2AF1 and WNT3 were examined with qRT-PCR as positive controls. Targeted NGS (TREX) was used on all samples for the same four genes. Agreement using both methods was almost 78%. Using NGS, all 1,000 samples were processed within 30 h. Classification of the HARS severity categories corresponding to radiation dose had an overall agreement ranging between 90-97%. Depending on the end point, either a combination of all genes or FDXR alone (H0 HARS or unexposed) provided the best classification. Using this optimized automated methodology, we assessed 100× more samples approximately three times faster compared to standard cytogenetic studies. We showed that a small set of genes, rather than a complex constellation of genes, provided robust positive (97%) and negative (97%) predictive values for HARS categories and radiation doses of 0, 0.5 and 5 Gy. The findings of this study support the potential utility of early radiation-induced gene expression changes for high-throughput biodosimetry and rapid identification of irradiated persons in need of hospitalization.
Collapse
Affiliation(s)
- Matthias Port
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | | | - Julian Haupt
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Andreas Lamkowski
- a Bundeswehr Institute of Radiobiology, Munich, Germany.,c Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, AllergieZENTRUM, Klinikum der Universität München, Munich, Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
19
|
Pannkuk EL, Laiakis EC, Gill K, Jain SK, Mehta KY, Nishita D, Bujold K, Bakke J, Gahagen J, Authier S, Chang P, Fornace AJ. Liquid Chromatography-Mass Spectrometry-Based Metabolomics of Nonhuman Primates after 4 Gy Total Body Radiation Exposure: Global Effects and Targeted Panels. J Proteome Res 2019; 18:2260-2269. [PMID: 30843397 DOI: 10.1021/acs.jproteome.9b00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid assessment of radiation signatures in noninvasive biofluids may aid in assigning proper medical treatments for acute radiation syndrome (ARS) and delegating limited resources after a nuclear disaster. Metabolomic platforms allow for rapid screening of biofluid signatures and show promise in differentiating radiation quality and time postexposure. Here, we use global metabolomics to differentiate temporal effects (1-60 d) found in nonhuman primate (NHP) urine and serum small molecule signatures after a 4 Gy total body irradiation. Random Forests analysis differentially classifies biofluid signatures according to days post 4 Gy exposure. Eight compounds involved in protein metabolism, fatty acid β oxidation, DNA base deamination, and general energy metabolism were identified in each urine and serum sample and validated through tandem MS. The greatest perturbations were seen at 1 d in urine and 1-21 d in serum. Furthermore, we developed a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) method to quantify a six compound panel (hypoxanthine, carnitine, acetylcarnitine, proline, taurine, and citrulline) identified in a previous training cohort at 7 d after a 4 Gy exposure. The highest sensitivity and specificity for classifying exposure at 7 d after a 4 Gy exposure included carnitine and acetylcarnitine in urine and taurine, carnitine, and hypoxanthine in serum. Receiver operator characteristic (ROC) curve analysis using combined compounds show excellent sensitivity and specificity in urine (area under the curve [AUC] = 0.99) and serum (AUC = 0.95). These results highlight the utility of MS platforms to differentiate time postexposure and acquire reliable quantitative biomarker panels for classifying exposed individuals.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Kirandeep Gill
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Shreyans K Jain
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Denise Nishita
- SRI International , Menlo Park , California 94025 , United States
| | - Kim Bujold
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - James Bakke
- SRI International , Menlo Park , California 94025 , United States
| | - Janet Gahagen
- SRI International , Menlo Park , California 94025 , United States
| | - Simon Authier
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - Polly Chang
- SRI International , Menlo Park , California 94025 , United States
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| |
Collapse
|
20
|
Pannkuk EL, Laiakis EC, Garcia M, Fornace AJ, Singh VK. Nonhuman Primates with Acute Radiation Syndrome: Results from a Global Serum Metabolomics Study after 7.2 Gy Total-Body Irradiation. Radiat Res 2018; 190:576-583. [PMID: 30183511 DOI: 10.1667/rr15167.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Threats of nuclear terrorism coupled with potential unintentional ionizing radiation exposures have necessitated the need for large-scale response efforts of such events, including high-throughput biodosimetry for medical triage. Global metabolomics utilizing mass spectrometry (MS) platforms has proven an ideal tool for generating large compound databases with relative quantification and structural information in a short amount of time. Determining metabolite panels for biodosimetry requires experimentation to evaluate the many factors associated with compound concentrations in biofluids after radiation exposures, including temporal changes, pre-existing conditions, dietary intake, partial- vs. total-body irradiation (TBI), among others. Here, we utilize a nonhuman primate (NHP) model and identify metabolites perturbed in serum after 7.2 Gy TBI without supportive care [LD70/60, hematologic (hematopoietic) acute radiation syndrome (HARS) level H3] at 24, 36, 48 and 96 h compared to preirradiation samples with an ultra-performance liquid chromatography quadrupole time-of-flight (UPLC-QTOF) MS platform. Additionally, we document changes in cytokine levels. Temporal changes observed in serum carnitine, acylcarnitines, amino acids, lipids, deaminated purines and increases in pro-inflammatory cytokines indicate clear metabolic dysfunction after radiation exposure. Multivariate data analysis shows distinct separation from preirradiation groups and receiver operator characteristic curve analysis indicates high specificity and sensitivity based on area under the curve at all time points after 7.2 Gy irradiation. Finally, a comparison to a 6.5 Gy (LD50/60, HARS level H2) cohort after 24 h postirradiation revealed distinctly increased separations from the 7.2 Gy cohort based on multivariate data models and higher compound fold changes. These results highlight the utility of MS platforms to differentiate time and absorbed dose after a potential radiation exposure that may aid in assigning specific medical interventions and contribute as additional biodosimetry tools.
Collapse
Affiliation(s)
| | - Evagelia C Laiakis
- Departments of Oncology.,Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Melissa Garcia
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Bethesda, Maryland
| | - Albert J Fornace
- Departments of Oncology.,Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Bethesda, Maryland.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|