1
|
Huang J, Huang S, Liu S, Feng L, Huang W, Wang Y, Huang D, Huang T, Huang X. Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2023; 25:4. [PMID: 38114843 DOI: 10.1208/s12249-023-02718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group (P < 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group (P < 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals.
Collapse
Affiliation(s)
- Jinping Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shuwen Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shengjun Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Lizhen Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Wenxiu Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yao Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Dongyi Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Tingting Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xingzhen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Xue W, Sun R, Hao Z, Xing Z, Cheng H, Shao L. Tetrandrine inhibits migration and invasion of BGC-823 and MKN-45 cells by regulating PI3K/AKT/mTOR signaling pathway. Chem Biol Drug Des 2023; 101:927-936. [PMID: 36593659 DOI: 10.1111/cbdd.14202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Tetrandrine (Tet), a traditional Chinese herbal medicine extract, exhibits anti-cancer effect on many types of cancer. Nonetheless, the action mechanism of Tet in gastric cancer (GC) is still largely unclear. In the current study, proliferation, invasion, and migration of the BGC-823 and MKN-45 cells were effectively suppressed by Tet treatment in a dose-dependent manner. Moreover, Tet suppressed expression of the proliferation-associated protein PCNA, the interstitial cell phenotype N-cadherin, and the extracellular matrix-associated MMP-2 and MMP-9 in BGC-823 and MKN-45 cells in a dose-dependent manner. PI3K/AKT/mTOR, a cancer promoting signaling, was inactivated by Tet in a dose-dependent manner in BGC-823 and MKN-45 cells. Furthermore, our results demonstrated that the inhibition of Tet to PCNA, N-cadherin, MMP-2, and MMP-9 expression was partly rescuedby AKT inhibitor or mTOR inhibitor. In animal experiments, tumor growth was inhibited by Tet administration in a dose-dependent manner. In conclusion, the current data indicated that Tet had a critical effect on inhibiting BGC-823 and MKN-45 cells proliferation, migration, invasion, and tumor growth via regulating PI3K/AKT/mTOR signaling pathway, suggesting that Tet might be a potential treatment for GC.
Collapse
Affiliation(s)
- Wanli Xue
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Rui Sun
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Zheng Hao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Zhenzhen Xing
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Hongjie Cheng
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| | - Lei Shao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, China
| |
Collapse
|
3
|
Niu B, Wei S, Sun J, Zhao H, Wang B, Chen G. Deciphering the molecular mechanism of tetrandrine in inhibiting hepatocellular carcinoma and increasing sorafenib sensitivity by combining network pharmacology and experimental evaluation. PHARMACEUTICAL BIOLOGY 2022; 60:75-86. [PMID: 34962429 PMCID: PMC8725900 DOI: 10.1080/13880209.2021.2017468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT The mechanism of tetrandrine (TET) in hepatocellular carcinoma (HCC) progression and sorafenib (Sora) chemosensitivity deserves investigation. OBJECTIVE Using network pharmacology approaches to elucidate the mechanisms of TET in HCC. MATERIALS AND METHODS CCK-8, colony formation, and flow cytometry assays were used to measure cell phenotypes. BALB/c nude mice were divided into Control, Sora (10 mg/kg), TET (50 mg/kg), and TET + Sora (10 mg/kg Sora plus 50 mg/kg TET) groups to evaluate the antitumor effects of TET for 21 days. Sora and TET were given by intraperitoneal injection or oral gavage. RESULTS For SMMC7721 (IC50 = 22.5 μM) and PLC8024 (IC50 = 18.4 μM), TET (10, 20 μM) reduced colony number (0.68 ± 0.04- and 0.50 ± 0.04-fold, 0.56 ± 0.04- and 0.42 ± 0.02-fold), induced cell cycle arrest at G0/G1 stage (1.22 ± 0.03- and 1.39 ± 0.07-fold, 1.37 ± 0.06- and 1.55 ± 0.05-fold), promoted apoptosis (2.49 ± 0.26- and 3.63 ± 0.33-fold, 2.74 ± 0.42- and 3.73 ± 0.61-fold), and inactivated PI3K/AKT/mTOR signalling. Sora (10 μM) decreased cell proliferation, enhanced apoptosis, and inhibited PI3K/AKT/mTOR signalling, and these effects were further aggravated in the combination group. Activating PI3K/AKT/mTOR reversed the effects of TET on cell proliferation and Sora sensitivity. In the combination group, tumour volumes and weights were decreased to 202.3 ± 17.4 mm3 and 151.5 ± 25.8 mg compared with Sora (510.6 ± 48.2 mm3 and 396.7 ± 33.5 mg). DISCUSSION AND CONCLUSIONS TET enhances Sora sensitivity by inactivating PI3K/AKT/mTOR, suggesting the potential of TET as a chemosensitizer in HCC.
Collapse
Affiliation(s)
- Biao Niu
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Sun
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huibo Zhao
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bing Wang
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Mo L, Zhang F, Chen F, Xia L, Huang Y, Mo Y, Zhang L, Huang D, He S, Deng J, Hao E, Du Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front Pharmacol 2022; 13:978600. [PMID: 36052124 PMCID: PMC9424556 DOI: 10.3389/fphar.2022.978600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.
Collapse
Affiliation(s)
- Liuying Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Yi Huang
- Office of the President, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Daquan Huang
- Guangxi Dahai Sunshine Pharmaceutical, Nanning, China
| | - Shunli He
- Guangxi Heli Pharmaceutical, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| |
Collapse
|
5
|
Lv B, Pan Y, Hou D, Chen P, Zhang J, Chu Y, Li M, Zeng Y, Yang D, Liu J. RNF4 silencing induces cell growth arrest and DNA damage by promoting nuclear targeting of p62 in hepatocellular carcinoma. Oncogene 2022; 41:2275-2286. [PMID: 35236966 DOI: 10.1038/s41388-022-02247-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the largest causes of cancer-related deaths worldwide owing to the limitation of effective treatment options. The ubiquitin-proteasome system has been rapidly recognized as a frequent target of deregulation leading to cancers. Enhanced DNA damage response (DDR) promotes HCC growth and prevents chemosensitivity, and ubiquitin E3 ligases are key modulators in DDR. Therefore, a better understanding of how E3 ligases regulate cell growth and DNA damage may provide novel insights in understanding the oncogenic mechanism and improving the efficacy of DNA damage therapeutic agents. Here, we performed a high-content RNAi screening targeting 52 DDR-related E3 ligases in HCC and found that ring finger protein 4 (RNF4) was essential for HCC growth. RNF4 was highly expressed in HCC tissues, and the expression levels of RNF4 were associated with poor outcomes. RNF4 silencing significantly suppressed the cell growth, and subsequently induced G2/M arrest and apoptosis of HCC cells in vitro; RNF4 silencing also demonstrated the tumor-suppressive efficacy on HCC in vivo. Moreover, RNF4 silencing increased DNA damage, and rendered HCC cells more sensitive to DNA damage drugs and radiation. We found RNF4 functionally interacts with p62, and mechanistic analyses indicated that RNF4 silencing triggered the nuclear enrichment of p62. Moreover, the p62 nuclear targeting was required for increased DNA damage and growth suppression mediated by RNF4 silencing. Thus, our findings suggest RNF4 is essential for HCC proliferation via preventing nuclear translocation of p62. RNF4 silencing promotes DNA damage and may serve as a novel strategy to suppress cell growth and increase the sensitivity of DNA damage therapeutic agents in HCC.
Collapse
Affiliation(s)
- Bin Lv
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Daisen Hou
- Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Ping Chen
- Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China
| | - Mingqi Li
- Center of Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, China. .,Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China. .,Department of Immunology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai, China.
| |
Collapse
|
6
|
Brasileiro Junior V, Nonaka C, Gonzaga A, de Oliveira Ramos C, Pereira Pinto L, Souza L. Immunoexpression of REGγ and apoptosis-related proteins in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 2021; 51:1138-1144. [DOI: 10.1016/j.ijom.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
|
7
|
Lei K, Bai H, Sun S, Xin C, Li J, Chen Q. PA28γ, an Accomplice to Malignant Cancer. Front Oncol 2020; 10:584778. [PMID: 33194729 PMCID: PMC7662426 DOI: 10.3389/fonc.2020.584778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome, which is involved in the regulation of several essential cellular processes and angiogenesis. Over the past 20 years, many amino acid sites and motifs have been proven to play important roles in the characteristic functions of PA28γ. The number of binding partners and validated cellular functions of PA28γ have increased, which has facilitated the clarification of its involvement in different biological events. PA28γ is involved in the progression of various diseases, and its aberrant overexpression in cancer is remarkable. Patients with low levels of PA28γ expression have a higher survival rate than those with high levels of PA28γ expression, as has been shown for a wide variety of tumors. The functions of PA28γ in cancer can be divided into five main categories: cell proliferation, cell apoptosis, metastasis and invasion, cell nuclear dynamics that have relevance to angiogenesis, and viral infection. In this review, we focus on the role of PA28γ in cancer, summarizing its aberrant expression, prooncogenic effects and underlying mechanisms in various cancers, and we highlight the possible cancer-related applications of PA28γ, such as its potential use in the diagnosis, targeted treatment and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Abstract
Cancer stem cells play a fundamental role in the growth, metastasis, recurrence, and chemoresistance of cancers of various origins; therefore, targeting these cells may prospectively help to eradicate cancer cells from patients. In this study, the effect of tetrandrine on the proliferation of CD133-positive (CD133) Hep-2 cells was examined to characterize its potential for targeting cancer stem cells in laryngeal cancer.The stem cell population of Hep-2 cells was isolated by magnetic-activated cell sorting against CD133, treated with different concentrations of tetrandrine, and assessed for cell cycle progression, proliferation, and migration. The mechanism of tetrandrine inhibition was also investigated.Our in vitro assay indicated that 20 μg/ml tetrandrine significantly inhibited the viability of CD133 Hep-2 cells (P < 0.01). Further cell cycle profiling showed a nearly 50% reduction of the S-phase cells after tetrandrine treatment, suggesting that tetrandrine inhibited DNA synthesis as well as cell proliferation. At the molecular level, tetrandrine induced downregulation of Bcl-2 and simultaneous upregulation of Bax and caspase-3 as well as enhanced cell apoptosis.Our results demonstrated that tetrandrine inhibited the cell viability and proliferation of CD133 Hep-2 cells by reducing the number of cells in the S-phase of the cell cycle and enhancing cell apoptosis.
Collapse
|
9
|
Shen M, Wang Q, Xu S, Chen G, Xu H, Li X, Zhao S. Role of oncogenic REGγ in cancer. Biomed Pharmacother 2020; 130:110614. [PMID: 32935661 DOI: 10.1016/j.biopha.2020.110614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a critical global health-care problem with limited therapeutic options. Since cancers are life-threatening illnesses, the identification of a promising oncotarget and its clinical correlates are relevant. Mounting evidence has emerged indicating that REG gamma (REGγ), a member of the 11S proteasome activators, plays a pivotal role in the development of multiple human cancers. However, an elaborate summary on the association between REGγ and cancer is still lacking. In this Review, we discuss how REGγ, through its ATP- and ubiquitin-independent manners, represents a promising cancer biomarker and therapeutic oncotarget for multiple human cancers. Aberrant REGγ expression closely associated with tumorigenesis attributes to its biological functions for controlling and regulating cell cycle, proliferation, migration, invasion, angiogenesis, and metastasis of the cancer cells by degrading proteins of cytosol and nucleus in the eukaryotic cells. REGγ serves as a molecular switch to activate multifarious oncogenic signaling pathways, such as MAPK/p38, TGF-β/Smad, and Wnt/β-catenin. The review describes that targeting REGγ may provide new diagnostic and therapeutic applications in cancer.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Qinzhang Wang
- Department of Urology, The First Affiliated Hospital of Shihezi University Medical School, Shihezi, China
| | - Shuaijun Xu
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guang Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Hao Xu
- Health Company, 69235, Army of PLA, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
10
|
Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 2020; 72:1491-1512. [PMID: 32696989 DOI: 10.1111/jphp.13339] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Tetrandrine, a natural bisbenzylisoquinoline alkaloid, possesses promising anticancer activities on diverse tumours. This review provides systematically organized information on cancers of tetrandrine in vivo and in vitro, discuss the related molecular mechanisms and put forward some new insights for the future investigations. KEY FINDINGS Anticancer activities of tetrandrine have been reported comprehensively, including lung cancer, colon cancer, bladder cancer, prostate cancer, ovarian cancer, gastric cancer, breast cancer, pancreatic cancer, cervical cancer and liver cancer. The potential molecular mechanisms corresponding to the anticancer activities of tetrandrine might be related to induce cancer cell apoptosis, autophagy and cell cycle arrest, inhibit cell proliferation, migration and invasion, ameliorate metastasis and suppress tumour cell growth. Pharmaceutical applications of tetrandrine combined with nanoparticle delivery system including liposomes, microspheres and nanoparticles with better therapeutic efficiency have been designed and applied encapsulate tetrandrine to enhance its stability and efficacy in cancer treatment. SUMMARY Tetrandrine was proven to have definite antitumour activities. However, the safety, bioavailability and pharmacokinetic parameter studies on tetrandrine are very limited in animal models, especially in clinical settings. Our present review on anticancer potentials of tetrandrine would be necessary and highly beneficial for providing guidelines and directions for further research of tetrandrine.
Collapse
Affiliation(s)
- Fei Luan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Nan Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|