1
|
Wang Q, Lee Y, Pujol-Canadell M, Perrier JR, Smilenov L, Harken A, Garty G, Brenner DJ, Ponnaiya B, Turner HC. Cytogenetic Damage of Human Lymphocytes in Humanized Mice Exposed to Neutrons and X Rays 24 h After Exposure. Cytogenet Genome Res 2021; 161:352-361. [PMID: 34488220 PMCID: PMC8455411 DOI: 10.1159/000516529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Andrew Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| |
Collapse
|
2
|
Wang Q, Lee Y, Shuryak I, Pujol Canadell M, Taveras M, Perrier JR, Bacon BA, Rodrigues MA, Kowalski R, Capaccio C, Brenner DJ, Turner HC. Development of the FAST-DOSE assay system for high-throughput biodosimetry and radiation triage. Sci Rep 2020; 10:12716. [PMID: 32728041 PMCID: PMC7392759 DOI: 10.1038/s41598-020-69460-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- ASELL, LLC, Owings Mills, MD, 21117, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | | | | | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|