Epperly MW, Fisher R, Zhang X, Hou W, Shields D, Wipf P, Wang H, Thermozier S, Greenberger JS. Fanconi Anemia Mouse Genotype-specific Mitigation of Total Body Irradiation by GS-Nitroxide JP4-039.
In Vivo 2020;
34:33-38. [PMID:
31882460 PMCID:
PMC6984088 DOI:
10.21873/invivo.11742]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIM
Radiation mitigator, GS-nitroxide, JP4-039, was evaluated for mitigation of total body irradiation (TBI) in Fanconi anemia (FA) Fancd2-/- (129/Sv), Fancg-/- (B6), and Fanca-/- (129/Sv) mice.
MATERIALS AND METHODS
JP4-039 dissolved in 30% 2-hydroxypropyl-β-cyclodextrin was injected intramuscularly 24 h after total body irradiation (9.25 Gy) into Fanca-/-, Fancd2-/- and Fancg-/- mice. Irradiation survival curves were performed in vitro using bone marrow stromal cell lines derived from Fanca-/-, Fancd2-/- and Fancg-/- mice.
RESULTS
FA mice demonstrate genotype specific differences in TBI mitigation by JP4-039. Radiation effects in derived bone marrow stromal cell lines in vitro were mitigated by drugs that block apoptosis, but not necroptosis or ferroptosis.
CONCLUSION
FA mouse models are valuable for elucidating DNA repair pathways in cell and tissue responses to TBI, and the role of drugs that target distinct cell death pathways.
Collapse