1
|
Kwon EJ, Lee H, Shin U, Kim ES, Myung K, Kim J, Park JH, Kim K, Lee Y, Oh CK, Kim YH. Ionizing radiation inhibits zebrafish embryo hatching through induction of tissue inhibitors of metalloproteinases (TIMPs) expression. FEBS J 2024; 291:5470-5485. [PMID: 39547957 DOI: 10.1111/febs.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Ionizing radiation (IR) has garnered growing attention because of its biological effects on aquatic organisms and humans. Here, we identify the most impacted organs and uncover the molecular mechanisms causing the changes in the context of vertebrate development using single-cell RNA sequencing. Alterations in cellular composition and biological functions were explored using transcriptomic profiling of zebrafish embryos exposed to 5 Gy. Single-cell RNA sequencing analyses unveiled notable shifts in the proportions of brain/central nervous system and hatching gland clusters. Although IR exposure led to increased expression of hatching enzymes, a significant but mild delay in hatching was observed following 5 Gy IR exposure. Gene Ontology analysis showed an increased expression of tissue inhibitors of metalloproteinases (TIMPs), known as matrix metalloproteinase inhibitors, which was confirmed via whole-mount in situ hybridization. Correlation analysis linked TIMPs to transcription factors cebpb and cebpd, which were significantly correlated post-IR exposure. Although no morphological changes were observed in some organs, including the brain, the study reveals substantial alterations in developing vertebrates. Notably, despite increased hatching enzymes, elevated TIMPs in the hatching gland suggest a regulatory mechanism impacting hatching activity. This research contributes to comprehending the ecological repercussions of IR exposure, emphasizing the importance of safety measures for aquatic ecosystems and overall environmental health.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Unbum Shin
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Eun-Sun Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jeongmo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Kihun Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yoonsung Lee
- Research Institute of Clinical Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Korea
- Institute for Future Earth, Pusan National University, Busan, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
2
|
Zhao W, Yao J, Liu Y, Mao L, He C, Long D. Protective role of melatonin against radiation-induced disruptions in behavior rhythm of zebrafish (danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107106. [PMID: 39317138 DOI: 10.1016/j.aquatox.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ionizing radiation, as an increasingly serious environmental pollutant, has aroused widespread public concern. Melatonin, as an indole heterocyclic compound, is known to have anti-inflammatory and antioxidant effects. However, few studies have considered the comprehensive impact of melatonin on radiation damage. In this study, we used zebrafish as experimental materials and employed methods such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking for automated behavior analysis, microscope imaging, and real-time fluorescence quantitative analysis. Zebrafish embryos at 2 h post-fertilization (hpf) were treated under four different experimental conditions to assess their growth, development, and metabolic consequences. Our findings indicate that 0.10 Gy gamma radiation significantly augments body length, eye area, spine width, and tail fin length in zebrafish, along with a marked increase in oxidative stress (P < 0.05). Moreover, it enhances cumulative swimming distance, time, and average speed, suggesting elevated activity levels. We observed circadian rhythm phase shifts, peak increases, and cycle shortening, accompanied by abnormal expression of genes pivotal to biological rhythms, exercise, melatonin synthesis, apoptosis/anti-apoptosis, and oxidation/antioxidant balance. The inclusion of melatonin (1 × 10-5 mol/L MLT) ameliorated these radiation-induced anomalies, while its independent effect on zebrafish was negligible. Melatonin can regulate oxidative stress responses, hinders apoptosis responses, and reprogramming the expression of rhythm-related genes in zebrafish embryos after reprogramming radiation stimulation. Overall, our research highlights melatonin's critical role in countering the biological damage inflicted by gamma radiation, proposing its potential as a therapeutic agent in radiation protection.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Jing Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yu Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
3
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
4
|
Zhao W, Mao L, He C, Ding D, Hu N, Song X, Long D. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114779. [PMID: 36924557 DOI: 10.1016/j.ecoenv.2023.114779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Biological rhythm refers to the internal regulation of various life activities of an organism, which are determined by the specific time structure sequences of each individual. Behavior rhythm is the most intuitive embodiment of biological rhythm. To study the effect of low dose radiation on behavioral rhythm, zebrafish (Danio rerio) was used as a model organism in this study. The early embryos of zebrafish were irradiated at doses of 0.01, 0.1, and 1 Gy to observe the changes in zebrafish development, circadian rhythm, key clock genes, related RNA and protein expression, and melatonin. The results revealed that 0.1 and 1 Gy radiation could lead to different degrees of telencephalic nerve cell apoptosis and the formation of vacuolar structures. 0.1 and 1 Gy radiation could reduce the hatching rate of zebrafish embryos at 72 hpf and delay embryo hatching. The analysis of circadian behavior at 120 hpf demonstrated that 1 Gy dose of radiation altered the circadian rhythm of zebrafish, as well as decreased the distance, amplitude, and phase of movement. RT-PCR analysis of the key clock genes (bmal1b, clock1a, per1b, per2, cry2, and nr1d1) involved in regulating circadian rhythm was performed. The results showed that 1 Gy radiation could interfere with the expression of clock genes in zebrafish embryos and upregulate bmal1b, clock1a, and per1b. Western blot experiments further verified the protein expression of key clock genes, bmal1b and clock. Detection of melatonin secretion at different time points over 24 h showed that radiation doses of 0.1 and 1 Gy could increase melatonin secretion. Based on these findings, it is speculated that a certain dose of radiation may affect melatonin secretion, which impacts the telencephalon structure and ontogeny of zebrafish, delays hatching, and changes the circadian rhythm. This effect is thought to be achieved through upregulating the expression of circadian rhythm genes, clock1a and per1b and related proteins, which may be responsible for the abnormal circadian rhythm caused by radiation.
Collapse
Affiliation(s)
- Weichao Zhao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
5
|
Sun LWH, Asana Marican HT, Shen H. In Vivo Imaging of Radiation-Induced Apoptosis at Single-Cell Resolution in Transgenic Zebrafish Embryos. Radiat Res 2023; 199:229-239. [PMID: 36745564 DOI: 10.1667/rade-22-00174.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
Among the various types of cell death induced by ionizing radiation, apoptosis is a highly regulated and well-characterized form. Investigating radiation-induced apoptosis in an intact organism offers advantages in capturing the dynamics of apoptosis under preserved physiology, although high resolution imaging remains challenging. Owing to their optical transparency and genetic amenability, zebrafish is an ideal animal model for research into this aspect. In this study, we present a secA5 transgenic zebrafish expressing genetically encoded secreted ANNEXIN V fused with mVenus, a yellow fluorescent protein that enables reporting of radiation-induced apoptosis. Using in vivo imaging approach, we show that after 2 Gy total-body irradiation, apoptosis could be visualized at single-cell resolution in different cell types throughout the embryo. Elevated apoptosis could be imaged and quantified in the neuroepithelium of the embryonic brain, as well as the proliferative zone and parenchyma of the larval brain. In addition, clearance of apoptotic cells by microglia, the professional phagocytes residing in the brain, could be imaged at single-cell resolution in irradiated larvae. These results establish transgenic secA5 zebrafish as a useful and versatile in vivo system for investigating the dynamic process of radiation-induced apoptosis.
Collapse
Affiliation(s)
| | | | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
6
|
Chen L, Tao D, Yu F, Wang T, Qi M, Xu S. Cineole regulates Wnt/β-catenin pathway through Nrf2/keap1/ROS to inhibit bisphenol A-induced apoptosis, autophagy inhibition and immunosuppression of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:30-41. [PMID: 36195267 DOI: 10.1016/j.fsi.2022.09.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), an environmental pollutant, can cause multiple organ tissue damage by inducing oxidative stress. Cineole (CIN) is a terpene oxide existing in a variety of plant essential oils, which has anti-inflammatory, analgesic, and antioxidant effects. This study examined the effects of 200 nM BPA and 20 μM CIN on apoptosis, autophagy, and immunology in grass carp hepatocytes (L8824). The treatments were categorized as NC, CIN, BPA + CIN, and BPA. The findings demonstrated that BPA exposure could increase ROS levels and oxidative stress-related indicators, decrease the expression of the Nrf2/keap1 pathway and the Wnt/β-catenin pathway, increase the expression of genes involved in the apoptotic pathway (Bax and Caspase3), and decrease the expression of the anti-apoptotic gene Bcl-2 by lowering mitochondrial membrane potential. BPA also reduced the expression of genes linked to autophagy (ATG5, Beclin1, LC3). Changes in immunological function after BPA exposure were also shown by changes in the amounts of antimicrobial peptides (HEPC, β-defensin, LEAP2) and cytokines (INF-γ, IL-1β, IL-2, and TNF-α). After the co-treatment of CIN and BPA, CIN can inhibit BPA-induced apoptosis and recover from autophagy and immune function to a certain extent by binding to keap1 to exert an anti-oxidative regulatory effect of Nrf2 incorporation into the nucleus. Molecular docking provides strong evidence for the interaction of CIN ligands with keap1 receptors. Therefore, these results indicated that CIN could inhibit BPA-induced apoptosis, autophagy inhibition and immunosuppression in grass carp hepatocytes by regulating the Wnt/β-catenin pathway with Nrf2/keap1/ROS. This study provided further information to the risk assessment of the neuroendocrine disruptor BPA on aquatic organisms and offered suggestions and resources for further research into the function of natural extracts in the body's detoxification process.
Collapse
Affiliation(s)
- Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Dayong Tao
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Tian Wang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China; Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| |
Collapse
|
7
|
Wagle R, Song YH. Sensitive-stage embryo irradiation affects embryonic neuroblasts and adult motor function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development.
Objective
Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated.
Result
Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults.
Conclusion
Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.
Collapse
|
8
|
Marican HTA, Shen H. Metaphase-Based Cytogenetic Approach Identifies Radiation-Induced Chromosome and Chromatid Aberrations in Zebrafish Embryos. Radiat Res 2021; 197:261-269. [PMID: 34860251 DOI: 10.1667/rade-21-00145.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 11/03/2022]
Abstract
Metaphase-based cytogenetic methods based on scoring of chromosome aberrations for the estimation of the radiation dose received provide a powerful approach for evaluating the associated risk upon radiation exposure and form the bulk of our current knowledge of radiation-induced chromosome damages. They mainly rely on inducing quiescent peripheral lymphocytes into proliferation and blocking them at metaphases to quantify the damages at the chromosome level. However, human organs and tissues demonstrate various sensitivity towards radiation and within them, self-proliferating progenitor/stem cells are believed to be the most sensitive populations. The radiation-induced chromosome aberrations in these cells remain largely unknown, especially in the context of an intact living organism. Zebrafish is an ideal animal model for research into this aspect due to their small size and the large quantities of progenitor cells present during the embryonic stages. In this study, we employ a novel metaphase-based cytogenetic approach on zebrafish embryos and demonstrate that chromosome-type and chromatid-type aberrations could be identified in progenitor cells at different cell-cycle stages at the point of radiation exposure. Our work positions zebrafish at the forefront as a useful animal model for studying radiation-induced chromosome structural changes in vivo.
Collapse
Affiliation(s)
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|