1
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
3
|
Brandi J, Di Carlo C, Manfredi M, Federici F, Bazaj A, Rizzi E, Cornaglia G, Manna L, Marengo E, Cecconi D. Investigating the Proteomic Profile of HT-29 Colon Cancer Cells After Lactobacillus kefiri SGL 13 Exposure Using the SWATH Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1690-1699. [PMID: 31309410 DOI: 10.1007/s13361-019-02268-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Despite some studies revealed that kefir acts on different cancers, such as colorectal cancer, the proteomic changes that occur in the colon cancer cells remain to be explored. In this study, the proteomic analysis was combined with determination of kefir characteristics (e.g., adhesion capacity, gastrointestinal and antibiotic resistances), in order to confirm its use as a probiotic. Therefore, a label-free strategy based on SWATH-MS was applied to investigate the proteomic profile of HT-29 cells after exposure for 24 h to a specific strain of Lactobacillus kefiri named SGL 13. We identified a total of 60 differentially expressed proteins in HT-29 cells, among which most are located into the extracellular exosome, playing important/crucial roles in translation and cell adhesion, as indicated by the enrichment analysis. The eIF2 and retinoid X receptor activation pathways appeared to be correlated with the anti-tumoral effect of SGL 13. Immunoblot analysis showed an increase in Bax and a decrease in caspase 3 and mutant p53, and ELISA assay revealed inhibition of IL-8 secretion from HT-29 cells stimulated with LPS upon SGL 13 treatment, suggesting pro-apoptotic and anti-inflammatory properties of kefir. In conclusion, the results of this study, the first of its kind using co-culture of kefir and colon cancer cells, demonstrate that L. kefiri SGL 13 possesses probiotic potency and contribute to elucidate the molecular mechanisms involved in the L. kefiri-colon cancer cell interactions.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Marcello Manfredi
- ISALIT s.r.l., Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Alda Bazaj
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Eleonora Rizzi
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Giuseppe Cornaglia
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Laura Manna
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Sciences and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
4
|
Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018; 5:60-73. [PMID: 31773020 PMCID: PMC6871585 DOI: 10.14338/ijpt-18-00016.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Energetic, charged particles elicit an orchestrated DNA damage response (DDR) during their traversal through healthy tissues and tumors. Complex DNA damage formation, after exposure to high linear energy transfer (LET) charged particles, results in DNA repair foci formation, which begins within seconds. More protein modifications occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure activates several transcription factors that are cytoprotective or cytodestructive, or that upregulate cytokine and chemokine expression, and are involved in bystander signaling. Molecular signaling for a survival or death decision in different tumor types and healthy tissues should be studied as prerequisite for shaping sensitizing and protective strategies. Long-term signaling and gene expression changes were found in various tissues of animals exposed to charged particles, and elucidation of their role in chronic and late effects of charged-particle therapy will help to develop effective preventive measures.
Collapse
Affiliation(s)
- Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Arif Ali Chishti
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Luis F. Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| |
Collapse
|
5
|
Amundson SA. Gene Expression Studies for the Development of Particle Therapy. Int J Part Ther 2018; 5:49-59. [PMID: 30555854 PMCID: PMC6292674 DOI: 10.14338/ijpt-18-00010.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Proton therapy for cancer is now in widespread use, and facilities for carbon ion therapy are showing great promise, but a more complete understanding of the mechanisms underlying particle radiation therapy is still needed in order to optimize treatment. Studies of gene expression, especially those using whole genome techniques, can provide insight into many of the questions still remaining, from the molecular mechanisms involved to predicting patient outcome. This review will summarize gene expression studies of response to proton and carbon ion beams, as well as high-energy protons and high-z high-energy particles with relevance to particle therapy. In general, most such studies find that, in comparison with x-ray or gamma-ray exposure, particle irradiation increases both the number of genes responding and the magnitude of the response. Patterns of gene expression have suggested impacts on specific pathways of relevance to radiation therapy, such as enhancement or suppression of tumor progression or metastasis. However, even within the relatively small number of studies done to date there is no clear consensus of response, suggesting influence by multiple parameters, such as particle type, particle energy, and tumor type. Systematic gene expression studies can help to address these issues, and promoting a culture of data sharing will expedite the process, benefiting investigators across the radiation therapy field.
Collapse
Affiliation(s)
- Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Unverricht-Yeboah M, Giesen U, Kriehuber R. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. JOURNAL OF RADIATION RESEARCH 2018; 59:411-429. [PMID: 29800458 PMCID: PMC6054186 DOI: 10.1093/jrr/rry038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.
Collapse
Affiliation(s)
- Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
7
|
Beheshti A, Miller J, Kidane Y, Berrios D, Gebre SG, Costes SV. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies. Radiat Res 2018; 189:553-559. [DOI: 10.1667/rr15062.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Afshin Beheshti
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Yared Kidane
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Daniel Berrios
- USRA, NASA Ames Research Center, Moffett Field, Calfornia 94035
| | - Samrawit G. Gebre
- Wyle Labs, NASA Ames Research Center, Moffett Field, California, 94035
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California 94035
| |
Collapse
|
8
|
Park JG, Paul S, Briones N, Zeng J, Gillis K, Wallstrom G, LaBaer J, Amundson SA. Developing Human Radiation Biodosimetry Models: Testing Cross-Species Conversion Approaches Using an Ex Vivo Model System. Radiat Res 2017; 187:708-721. [PMID: 28328310 DOI: 10.1667/rr14655.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the event of a large-scale radiation exposure, accurate and quick assessment of radiation dose received would be critical for triage and medical treatment of large numbers of potentially exposed individuals. Current methods of biodosimetry, such as the dicentric chromosome assay, are time consuming and require sophisticated equipment and highly trained personnel. Therefore, scalable biodosimetry approaches, including gene expression profiles in peripheral blood cells, are being investigated. Due to the limited availability of appropriate human samples, biodosimetry development has relied heavily on mouse models, which are not directly applicable to human response. Therefore, to explore the feasibility of using non-human primate (NHP) models to build and test a biodosimetry algorithm for use in humans, we irradiated ex vivo peripheral blood samples from both humans and rhesus macaques with doses of 0, 2, 5, 6 and 7 Gy, and compared the gene expression profiles 24 h later using Agilent human microarrays. Among the dose-responsive genes in human and using non-human primate, 52 genes showed highly correlated expression patterns between the species, and were enriched in p53/DNA damage response, apoptosis and cell cycle-related genes. When these interspecies-correlated genes were used to build biodosimetry models with using NHP data, the mean prediction accuracy on non-human primate samples was about 90% within 1 Gy of delivered dose in leave-one-out cross-validation. However, tests on human samples suggested that human gene expression values may need to be adjusted prior to application of the NHP model. A "multi-gene" approach utilizing all gene values for cross-species conversion and applying the converted values on the NHP biodosimetry models, gave a leave-one-out cross-validation prediction accuracy for human samples highly comparable (up to 94%) to that for non-human primates. Overall, this study demonstrates that a robust NHP biodosimetry model can be built using interspecies-correlated genes, and that, by using multiple regression-based cross-species conversion of expression values, absorbed dose in human samples can be accurately predicted by the NHP model.
Collapse
Affiliation(s)
- Jin G Park
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Sunirmal Paul
- d Center for Radiological Research, Columbia University Medical Center, New York
| | - Natalia Briones
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Jia Zeng
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,b Department of Biomedical Informatics, Arizona State University, Arizona
| | - Kristin Gillis
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Garrick Wallstrom
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,b Department of Biomedical Informatics, Arizona State University, Arizona
| | - Joshua LaBaer
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,c School of Molecular Sciences, Arizona State University, Arizona
| | - Sally A Amundson
- d Center for Radiological Research, Columbia University Medical Center, New York
| |
Collapse
|
9
|
Broustas CG, Xu Y, Harken AD, Chowdhury M, Garty G, Amundson SA. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model. Radiat Res 2017; 187:433-440. [PMID: 28140791 DOI: 10.1667/rr0005.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
Collapse
Affiliation(s)
- Constantinos G Broustas
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Yanping Xu
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Andrew D Harken
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Mashkura Chowdhury
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Guy Garty
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
10
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
11
|
Suetens A, Moreels M, Quintens R, Soors E, Buset J, Chiriotti S, Tabury K, Gregoire V, Baatout S. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation. JOURNAL OF RADIATION RESEARCH 2015; 56:11-21. [PMID: 25190155 PMCID: PMC4572596 DOI: 10.1093/jrr/rru070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated (13)C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type-specific responses to the different radiation types.
Collapse
Affiliation(s)
- Annelies Suetens
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Els Soors
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Sabina Chiriotti
- Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium Radiation Protection, Dosimetry and Calibration Expert Group, SCK•CEN, Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Vincent Gregoire
- Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium Department of Molecular Biotechnology, Ghent University, Coupure links 653, Ghent, Belgium
| |
Collapse
|
12
|
Ding LH, Park S, Peyton M, Girard L, Xie Y, Minna JD, Story MD. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. BMC Genomics 2013; 14:372. [PMID: 23724988 PMCID: PMC3680091 DOI: 10.1186/1471-2164-14-372] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 05/20/2013] [Indexed: 12/20/2022] Open
Abstract
Background Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Results Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was specifically induced after HZE particle irradiation. A 73 gene signature capable of predicting with 96% accuracy the radiation species to which cells were exposed, was developed. Conclusions These data suggest that the molecular response to the radiation species used here is a function of the energy deposition characteristics of the radiation species. This novel molecular response to HZE particles may have implications for radiotherapy including particle selection for therapy and risk for second cancers, risk for cancers from diagnostic radiation exposures, as well as NASA’s efforts to develop more accurate lung cancer risk estimates for astronaut safety. Lastly, irrespective of the source of radiation, the gene expression changes observed set the stage for functional studies of initiation or progression of radiation-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Expression pattern of small nucleolar RNA host genes and long non-coding RNA in X-rays-treated lymphoblastoid cells. Int J Mol Sci 2013; 14:9099-110. [PMID: 23698766 PMCID: PMC3676775 DOI: 10.3390/ijms14059099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
A wide variety of biological effects are induced in cells that are exposed to ionizing radiation. The expression changes of coding mRNA and non-coding micro-RNA have been implicated in irradiated cells. The involvement of other classes of non-coding RNAs (ncRNA), such as small nucleolar RNAs (snoRNAs), long ncRNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs) in cells recovering from radiation-induced damage has not been examined. Thus, we investigated whether these ncRNA were undergoing changes in cells exposed to ionizing radiation. The modulation of ncRNAs expression was determined in human TK6 (p53 positive) and WTK1 (p53 negative) cells. The snoRNA host genes SNHG1, SNHG6, and SNHG11 were induced in TK6 cells. In WTK1 cells, SNHG1 was induced but SNHG6, and SNHG11 were repressed. SNHG7 was repressed in TK6 cells and was upregulated in WTK1 cells. The lncRNA MALAT1 and SOX2OT were induced in both TK6 and WTK1 cells and SRA1 was induced in TK6 cells only. Interestingly, the MIAT and PIWIL1 were not expressed in TK6 cells before or after the ionizing radiation treatment. The MIAT and PIWIL1 were upregulated in WTK1 cells. This data provides evidence that altered ncRNA expression is a part of the complex stress response operating in radiation-treated cells and this response depends on functional p53.
Collapse
|
14
|
Danielsson A, Claesson K, Parris TZ, Helou K, Nemes S, Elmroth K, Elgqvist J, Jensen H, Hultborn R. Differential gene expression in human fibroblasts after alpha-particle emitter211At compared with60Co irradiation. Int J Radiat Biol 2012; 89:250-8. [DOI: 10.3109/09553002.2013.746751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Knops K, Boldt S, Wolkenhauer O, Kriehuber R. Gene expression in low- and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res 2012; 178:304-12. [PMID: 22954392 DOI: 10.1667/rr2913.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To overcome the limitations of existing biodosimetry methods, we examined dose- and time-dependent gene expression changes in human peripheral blood lymphocytes after exposure to low-, medium- and high-dose ionizing radiation and searched for genes suitable for predicting radiation doses in the low-dose range. Additionally, the experiments are intended to provide new insights into the biological effects of exposures to low-, medium- and high-dose radiation. Gene expression analysis using whole human genome DNA microarrays was performed in human blood from six healthy donors irradiated ex vivo with 0, 0.02, 0.1, 0.5, 1, 2 and 4 Gy (γ rays, (137)Cs) at 6, 24 and 48 h after high-dose exposure (0.5-4 Gy), and at 24 and 48 h after low-dose exposures of 0.02 or 0.1 Gy. DNA microarray-based alterations in gene expression were found in a wide dose range in vitro and allowed us to identify nine genes with which low radiation doses could be accurately predicted with a sensitivity of 95.6%. In the low-, medium- and high-dose range, expression alterations increased with increasing dose and time after exposure, and were assigned to different biological processes such as nucleosome assembly, apoptosis and DNA repair response. We conclude from our results that gene expression profiles are suitable for predicting low-dose radiation exposure in a rapid and reliable manner and that acute low-dose exposure, as low as 20 mGy, leads to well-defined physiological responses in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Katja Knops
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | |
Collapse
|
16
|
Bufalieri F, Licursi V, D'Antonio M, Castrignanò T, Amendola R, Negri R. The transcriptional response of mammalian cancer cells to irradiation is dominated by a cell cycle signature which is strongly attenuated in non-cancer cells and tissues. Int J Radiat Biol 2012; 88:822-9. [PMID: 22420862 DOI: 10.3109/09553002.2012.676230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Our goal was to identify genes showing a general transcriptional response to irradiation in mammalian cells and to analyze their response in function of dose, time and quality of irradiation and of cell type. MATERIALS AND METHODS We used a modified MIAME (Minimal Information About Microarray Experiments) protocol to import microarray data from 177 different irradiation conditions in the Radiation Genes database and performed cut-off-based selections and hierarchical gene clustering. RESULTS We identified a set of 29 genes which respond to a wide range of irradiation conditions in different cell types and tissues. Functional analysis of the negatively modulated genes revealed a dominant signature of mitotic cell cycle regulation which appears both dose and time-dependent. This signature is prominent in cancer cells and highly proliferating tissues but it is strongly attenuated in non cancer cells. CONCLUSIONS The transcriptional response of mammalian cancer cells to irradiation is dominated by a mitotic cell cycle signature both dose and time-dependent. This core response, which is present in cancer cells and highly proliferating tissues such as skin, blood and lymph node, is weaker or absent in non-cancer cells and in liver and spleen. CDKN1A (cyclin-dependent kinase inhibitor 1A) appears as the most generally induced mammalian gene and its response (mostly dose- and time-independent) seems to go beyond the typical DNA damage response.
Collapse
Affiliation(s)
- Francesca Bufalieri
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology Charles Darwin, University of Rome, La Sapienza
| | | | | | | | | | | |
Collapse
|