1
|
Wang J, Zhang J, Wen W, Wang F, Wu M, Chen D, Yu J. Exploring low-dose radiotherapy to overcome radio-immunotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2023:166789. [PMID: 37302425 DOI: 10.1016/j.bbadis.2023.166789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the current treatment landscape for cancer, yet the response rates of ICIs remain unmet. Synergistic with immunotherapy, low-dose radiotherapy (LDRT) has been demonstrated to activate anti-tumor immunity - a transition from traditional radiation therapy geared toward local radical treatment to a type of immunological adjuvant. As such, studies utilizing LDRT to enhance the efficacy of immunotherapy have been increasing preclinically and clinically. This paper reviews the recent strategies of using LDRT to overcome the resistance of ICIs, as well as providing potential opportunities in cancer treatment. Despite the potential of LDRT in immunotherapy is recognized, the mechanisms behind this form of treatment remain largely elusive. Thus, we reviewed history, mechanisms and challenges associated with this form of treatment, as well as different modes of its application, to provide relatively accurate practice standards for LDRT as a sensitizing treatment when combined with immunotherapy or radio-immunotherapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Weitao Wen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Jinming Yu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
2
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
3
|
Ricciotti E, Sarantopoulou D, Grant GR, Sanzari JK, Krigsfeld GS, Kiliti AJ, Kennedy AR, Grosser T. Distinct vascular genomic response of proton and gamma radiation-A pilot investigation. PLoS One 2019; 14:e0207503. [PMID: 30742630 PMCID: PMC6370185 DOI: 10.1371/journal.pone.0207503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber J. Kiliti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
4
|
Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, Sridharan V, Nishiyama NC, Wroe A, Nelson GA. Combined Effects of Low-Dose Proton Radiation and Simulated Microgravity on the Mouse Retina and the Hematopoietic System. Radiat Res 2018; 192:241-250. [PMID: 30430917 DOI: 10.1667/rr15219.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of the current study was to characterize the effects of simulated microgravity and radiation-induced changes in retina and retinal vasculature, and to assess the accompanying early changes in immune cells and hematological parameters. To better understand the effects of spaceflight, we used a combination of treatments designed to simulate both the radiation and low-gravity aspects of space conditions. To simulate the broad energy spectrum of a large solar particle event (SPE) and galactic cosmic ray (GCR) radiation, male C57BL/6J mice were exposed to whole-body irradiation using fully modulated beams of 150-MeV protons containing particles of energy from 0 to 150 MeV and a uniform dose-vs.-depth profile. The mice were also hindlimb-unloaded (HLU) by tail suspension. Mice were unloaded for 7 days, exposed to 50 cGy, unloaded for an additional 7 days and then sacrificed for tissue isolation at days 4 and 30 after the combined treatments. Increases in the number of apoptotic cells were observed in the endothelial cells of mice that received radiation alone or with HLU compared to controls at both days 4 and 30 (P < 0.05). Endothelial nitric oxide synthase (eNOS) levels were significantly elevated in the retina after irradiation only or combined with HLU compared to controls at the 30-day time point (P < 0.05). The most robust changes were observed in the combination group, suggesting a synergistic response to radiation and unloading. For hematopoietic parameters, our analysis indicated the main effects for time and radiation at day 4 after treatments (day 11 postirradiation) (P < 0.05), but a smaller influence of HLU for both white blood cell and lymphocyte counts. The group treated with both radiation and HLU showed greater than 50% reduction in lymphocyte counts compared to controls. Radiation-dependent differences were also noted in specific lymphocyte subpopulations (T, B, natural killer cells). This study shows indications of an early effect of low-dose radiation and spaceflight conditions on retina and immune populations.
Collapse
Affiliation(s)
- X W Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - M Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - D Rodriguez
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - M Campbell-Beachler
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - T Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - S Stanbouly
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - V Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - N C Nishiyama
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - A Wroe
- Department of Radiation Medicine, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - G A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| |
Collapse
|
5
|
Wang Y, Chang J, Li X, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M, Zhou D, Shao L. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice. PLoS One 2017; 12:e0189466. [PMID: 29232383 PMCID: PMC5726652 DOI: 10.1371/journal.pone.0189466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Xin Li
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Tamako Jones
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Gregory Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhang H, Yan H, Ying J, Du L, Zhang C, Yang Y, Wang H, Wang H. Resveratrol ameliorates ionizing irradiation-induced long-term immunosuppression in mice. Int J Radiat Biol 2017; 94:28-36. [DOI: 10.1080/09553002.2018.1408976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Hao Yan
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Jianzi Ying
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yiling Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
7
|
Chang J, Wang Y, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M, Zhou D, Shao L. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice. Int J Radiat Biol 2017; 93:1312-1320. [PMID: 28782442 DOI: 10.1080/09553002.2017.1356941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. MATERIALS AND METHODS We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. RESULTS 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. CONCLUSION Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.
Collapse
Affiliation(s)
- Jianhui Chang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Yingying Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Vijayalakshmi Sridharan
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Tamako Jones
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Xiao Wen Mao
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Gregory Nelson
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Marjan Boerma
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Daohong Zhou
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Lijian Shao
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| |
Collapse
|
8
|
Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:39-44. [PMID: 28554508 PMCID: PMC6711775 DOI: 10.1016/j.lssr.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6J mice were exposed to 0.3, 0.6 and 0.9Gy 28Si (600MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.
Collapse
Affiliation(s)
- Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Feng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer Turner
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Blair Stewart
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA; Departments of Neurology, and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1947819. [PMID: 27774116 PMCID: PMC5059652 DOI: 10.1155/2016/1947819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022]
Abstract
Molecular hydrogen (H2) has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR). All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM) observation, forced swim test (FST), the open field test (OFT), the chromosome aberration (CA), the peripheral blood cells parameters analysis, the sperm abnormality (SA), the lymphocyte transformation test (LTT), and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR.
Collapse
|
10
|
Yu H, Qu Y, Shang Q, Yan C, Jiang P, Wang X, Liang D, Jiang T. The clinical effects of low-dose splenic irradiation combined with chest three-dimensional conformal radiotherapy on patients with locally advanced non-small-cell lung cancer: a randomized clinical trial. Onco Targets Ther 2016; 9:5545-52. [PMID: 27660472 PMCID: PMC5019467 DOI: 10.2147/ott.s95992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective The objective of this study was to explore the clinical effects of low-dose splenic irradiation on locally advanced non-small-cell lung cancer (NSCLC) patients. Methods Thirty-eight patients with stage III NSCLC were randomly divided into a control group and a combined treatment group. The control group only received chest three-dimensional conformal radiotherapy, while the combined treatment group received low-dose splenic irradiation followed by chest three-dimensional conformal radiotherapy after 6 hours. T lymphocyte subsets of the blood cells were tested before, during, and after treatment once a week. The side effects induced by radiation were observed, and a follow-up was done to observe the survival statistics. Results The ratio differences in CD4+ cells, CD8+ cells, and CD4+/CD8+ before and after treatment were not statistically significant (P>0.05) in both the groups. The immune indexes were also not statistically significant (P>0.05) before and after radiotherapy in the combined treatment group. However, the numbers of CD4+ cells and CD4+/CD8+ ratios before radiotherapy were higher than after radiotherapy in the control group. There were no differences in the incidence of radiation toxicities between the two groups; however, the incidence of grade III or IV radiation toxicities was lower, and the dose at which the radiation toxicities appeared was higher in the combined treatment group. The total response rate was 63.16% (12/19) in the combined treatment group vs 42.11% (8/19) in the control group. The median 2-year progression-free survival (15 months in the combined treatment group vs 10 months in the control group) was statistically significant (P<0.05). The median 2-year overall survival (17.1 months in the combined treatment group vs 15.8 months in the control group) was not statistically significant (P>0.05). Conclusion Low-dose radiation can alleviate the radiation toxicities, improve the short-term efficacy of radiotherapy, and improve the survival of locally advanced NSCLC patients.
Collapse
Affiliation(s)
- Hongsheng Yu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yong Qu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qingjun Shang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chao Yan
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Peng Jiang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiang Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Donghai Liang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Tao Jiang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Mao XW, Nishiyama NC, Pecaut MJ, Campbell-Beachler M, Gifford P, Haynes KE, Becronis C, Gridley DS. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain. Radiat Res 2016; 185:647-57. [DOI: 10.1667/rr14267.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Khan S, Kumar A, Adhikari JS, Rizvi MA, Chaudhury NK. Protective effect of sesamol against60Co γ-ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. Free Radic Res 2015; 49:1344-61. [DOI: 10.3109/10715762.2015.1071485] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183:240-8. [PMID: 25635345 DOI: 10.1667/rr13887.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress.
Collapse
|
14
|
Wang B, Li B, Dai Z, Ren S, Bai M, Wang Z, Li Z, Lin S, Wang Z, Huang N, Yang P, Liu M, Min W, Ma H. Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4+CD25+Treg cells. Int J Biochem Cell Biol 2014; 55:98-108. [PMID: 25168696 DOI: 10.1016/j.biocel.2014.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/27/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
Abstract
The increased number of CD4(+)CD25(+)Treg cells in tumor local and peripheral splenic tissues is related to the low immune function as well as to tumor recurrence and metastasis. Our pre-clinical studies showed that low-dose radiation (LDR) of the spleen in liver cancer patients significantly improves immune functions. However, the molecular mechanisms of such radiation remained ill defined. This study explores the role of CD4(+)CD25(+)Treg cells in radiation-induced immunomodulatory effects. Using the diethylnitrosamine (DEN)-induced rat liver tumor model and in vitro cell experiments, the percentage of CD4(+)CD25(+)Treg/CD4(+) cells in the blood and the expressions of Foxp3(+), IL-10, TGF-β, and cytotoxic T lymphocyte-associated antigen-4(CTLA-4) in spleen and liver tumors significantly decreased after LDR of the spleen in rats with liver cancer. The tumors became smaller than those in the non-radiated group, with both showing a parallel relation. Flow cytometry and MTT results revealed that LDR failed to inhibit CD4(+)CD25(+)Treg cell proliferation. Conversely, apoptosis was reduced and proliferation was stimulated. This process also changed CTLA-4 molecule expression on the surfaces of CD4(+)CD25(+)Treg cells and reduced their inhibitory function against CD4(+)CD25(-)T cell proliferation, and the suppression function of CD4(+)CD25(+)Treg cells was further weakened with the introduction of the CTLA-4 inhibitor. Findings demonstrate that the reduction of CTLA-4 expression on the CD4(+)CD25(+)Treg cell surface and the further inhibition of cell function may be considered as important regulators of LDR-induced immunomodulatory effects. This study provides experimental evidence to elucidate the immune enhancement induced by this process and presents a novel method for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Baofeng Wang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Baohua Li
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Song Ren
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Minghua Bai
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhongwei Wang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zongfang Li
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhidong Wang
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Na Huang
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Mengjie Liu
- Department of Oncology, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Weili Min
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Hongbing Ma
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
15
|
Liu YH, Ma SD, Fu QJ, Zhao LY, Li Y, Wang HQ, Li MC. Effect of lentinan on membrane-bound protein expression in splenic lymphocytes under chronic low-dose radiation. Int Immunopharmacol 2014; 22:505-14. [PMID: 25102307 DOI: 10.1016/j.intimp.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
Abstract
We investigated the protective effects of lentinan against damages to chronic and low-dose radiation (CL-radiation) by using mouse models. The mice were randomized divided into four groups: normal control mice (Ctr), mice exposed to radiation (Rad), irradiated mice treated with low-dose lentinan (0.1mg/(kg.d), RL), and irradiated mice treated with high-dose lentinan (0.5mg/(kg.d), RH). All the mice were injected intraperitoneally once a day at a dose of 0.5mL (Ctr and Rad with normal sodium while RL and RH with lentinan). The success of radiation models was confirmed by HE stain and cell morphology by a transmission electron microscope (TEM). On the basis of radiation models, we investigated the expression of proteins on the membrane of splenic cells through MALDI-TOF-MS/MS. The results demonstrated that both RT-radiation and lentinan affected the expression of membrane proteins, but lentinan protected the splenic cells and tissue from the injuries caused by CL-radiation. Therefore, we speculated that CL-radiation mainly damages the genetic materials and membrane-bound proteins, while lentinan protects membrane-bound proteins by regulating signal transduction and the appearance of the cells.
Collapse
Affiliation(s)
- Ying-Hua Liu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Shou-Dong Ma
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Qing-Jie Fu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Li-Yan Zhao
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Yi Li
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Hai-Qing Wang
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Ming-Chun Li
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China.
| |
Collapse
|
16
|
Sanzari JK, Cengel KA, Wan XS, Rusek A, Kennedy AR. Acute Hematological Effects in Mice Exposed to the Expected Doses, Dose-rates, and Energies of Solar Particle Event-like Proton Radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 2:86-91. [PMID: 25202654 PMCID: PMC4155507 DOI: 10.1016/j.lssr.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure.
Collapse
Affiliation(s)
- Jenine K. Sanzari
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 183 John Morgan Building, Philadelphia, Pennsylvania, 19104-6072, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 183 John Morgan Building, Philadelphia, Pennsylvania, 19104-6072, USA
| | - X. Steven Wan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 183 John Morgan Building, Philadelphia, Pennsylvania, 19104-6072, USA
| | - Adam Rusek
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, New York, USA
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 183 John Morgan Building, Philadelphia, Pennsylvania, 19104-6072, USA
| |
Collapse
|
17
|
Gridley DS, Mao XW, Cao JD, Bayeta EJM, Pecaut MJ. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radic Res 2013; 47:811-20. [DOI: 10.3109/10715762.2013.826351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Correction: in the article “Low-Dose Total-Body γ Irradiation Modulates Immune Response to Acute Proton Radiation” by Luo-Owen et al.. Radiat Res 2012. [DOI: 10.1667/0033-7587-177.6.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|