1
|
Liu M, Wang Y, Ren F, Zhang W, Zheng H, Zhang R, Gao C, Luo L, Nie C, Gu J. Simulated microgravity activates autophagy expression in the rat retina. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:107-116. [PMID: 40280632 DOI: 10.1016/j.lssr.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE This study aims to investigate the expression and possible role of autophagy in the retina of rats under microgravity. METHODS Adult Sprague-Dawley (SD) rats were randomly allocated to either the tail suspension group (TS) or the control group (CTRL). To simulate microgravity-induced redistribution of cephalad fluid observed in space, the rats in the TS group underwent tail suspension for a duration of 4 weeks. Optical coherence tomography angiography (OCTA) was applied to assess the ocular blood flow and thickness of the retina. Hematoxylin and eosin (H&E) staining, along with transmission electron microscopy (TEM), were used to investigate morphological changes and autophagosomes in the retina. Endoplasmic reticulum autophagy (ER-phagy) related proteins (ATF4, CHOP, and GRP78) in the rat retina were detected using an immunofluorescence assay (IFA). The levels of autophagy-related proteins (Beclin1, P62, LC3B, ATF4, CHOP, and GRP78) were quantified by Western blot (WB). The expression of ATG5 and ATG7 genes was examined via real-time quantitative PCR (qPCR). RESULTS In fundus imaging signs, microgravity increases retinal thickness and the retinal vascular perfusion area. Moreover, microgravity also upregulates Beclin1, LC3B, ATF4, CHOP, and GRP78 while downregulating P62 in retina. It elevates the number of autophagosomes and activates autophagy and ER-phagy signaling pathways in retina. CONCLUSION Simulated microgravity can trigger the organism's intrinsic protective mechanisms, inducing the activation of autophagy (ER-phagy) in the retina, which may represent a self-defense mechanism against adverse conditions of microgravity-related stressors.
Collapse
Affiliation(s)
- Meng Liu
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyu Wang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Wenqian Zhang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Hanwen Zheng
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Rong Zhang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Caiyun Gao
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Ling Luo
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Chuang Nie
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China.
| | - Jianwen Gu
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China.
| |
Collapse
|
2
|
Akbarialiabad H, Jamshidi P, Aminzade Z, Azizi N, Taha SR, Sadeghian N, Varghese LJK, Kouhanjani MF, Niknam N, Babocs D, El-Assaad F, Russomano T, Murrell DF, Paydar S, Bunick CG, Christiansen R, Mark Melin M. Leveraging space innovations for cancer breakthroughs on Earth. Trends Cancer 2025; 11:433-440. [PMID: 40082142 DOI: 10.1016/j.trecan.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Space science is reshaping oncology by providing novel insights into cancer biology, diagnostics, and therapeutics. The unique space environment - characterized by microgravity and cosmic radiation - induces profound alterations in cancer cell behavior, immune responses, and tumor microenvironment (TME) interactions. These conditions offer a platform for studying cancer progression, enhancing drug discovery, and refining treatment strategies. This opinion article explores microgravity-induced changes in tumor biology, space-driven advancements in imaging and radiation research, and extraterrestrial contributions to cancer therapeutics. By leveraging these innovations, space research holds transformative potential for improving cancer diagnostics and treatment on Earth.
Collapse
Affiliation(s)
- Hossein Akbarialiabad
- Faculty of Medicine, University of New South Wales, Sydney, Australia; American Canadian School of Medicine, Portsmouth, Dominica; Nuvance Global Health Program, Nuvance Health, Danbury, CT, USA.
| | - Parnian Jamshidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Najmeh Sadeghian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lydia Johnson Kolaparambil Varghese
- European Society of Aerospace Medicine, Space Medicine Group, Cologne, Germany; University Department of Anaesthesiology, Intensive Care Medicine, Pain Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr-University Bochum, Minden, Germany; German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany
| | - Mohsen Farjoud Kouhanjani
- Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Dora Babocs
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fatima El-Assaad
- UNSW Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Australia, Sydney, Australia
| | - Thais Russomano
- Center for Aerospace Medicine Studies, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Dedee F Murrell
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Dermatology, St George Hospital, Sydney, Australia; The George Institute for Global Health, Sydney, Australia
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rowena Christiansen
- Department of Medical Education, The University of Melbourne Medical School, Melbourne, Australia.
| | - M Mark Melin
- Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Lee R, Ong J, Waisberg E, Mader T, Berdahl J, Suh A, Panzo N, Memon H, Sampige R, Katsev B, Kadipasaoglu CM, Mason CE, Beheshti A, Zwart SR, Smith SM, Lee AG. Potential Risks of Ocular Molecular and Cellular Changes in Spaceflight. Semin Ophthalmol 2025:1-11. [PMID: 40094398 DOI: 10.1080/08820538.2025.2471443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Many fundamental cellular and molecular changes are known to occur in biological systems during spaceflight, including oxidative stress, DNA damage, mitochondrial damage, epigenetic factors, telomere lengthening, and microbial shifts. We can apply the consequences of these molecular changes in ocular cells, such as the retinal ganglion cells and corneal epithelium, to identify ophthalmologic risks during spaceflight. This review aims to discuss the potential molecular changes in greater detail and apply the principles to ocular cells and ophthalmic disease risk in astronauts. METHODS A targeted, relevant search of the literature on the topic and related topics of ocular surface and spaceflight was conducted with scholarly databases PubMed, Web of Science, and Embase from inception to July2024 with search terms "oxidative stress"; "DNA damage"; "Mitochondrial Dysfunction"; "Epigenetics"; "Telomeres"; "Microbiome"; "ocular cells"; "spaceflight"; "microgravity"; "radiation." RESULTS A total of 115 articles were included following screening and eligibility assessment. Key findings include molecular changes and their contributions to ophthalmic diseases like cataracts, spaceflight-associated neuro-ocular syndrome, and dry eye syndrome. CONCLUSION This review provides a comprehensive overview of risks to vision associated with long-duration spaceflight missions beyond low Earth orbit (LEO). Further investigation into targeted countermeasures is imperative to mitigate vision-threatening sequelae in astronauts undertaking deep-space exploration.
Collapse
Affiliation(s)
- Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, USA
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John Berdahl
- Vance Thompson Vision, Sioux Falls, South Dakota, USA
| | - Alex Suh
- Tulane School of Medicine, New Orleans, Louisiana, USA
| | | | - Hamza Memon
- Texas A&M School of Medicine, Bryan, TX, USA
| | - Ritu Sampige
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Blake Katsev
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Afshin Beheshti
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara R Zwart
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Feldman TB, Yakovleva MA, Ostrovsky MA. Retinoids in lipofuscin granules from retinal pigment epithelium as biomarkers of the damaging effect of ionizing radiation. Exp Eye Res 2025; 252:110270. [PMID: 39922526 DOI: 10.1016/j.exer.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium with age, especially in patients with visual diseases, including progressive age-related macular degeneration. Retinoids (bisretinoids and their oxidation products) are major sources of lipofuscin granule fluorescence. The aim of this work was to analyze the radiation-mediated oxidation of retinoids in lipofuscin granules obtained from the human cadaver eye retinal pigment epithelium. Fluorescent and chromatographic analyses of retinoids were performed before and after irradiation of lipofuscin granules with accelerated protons. The fluorescent properties of chloroform extracts from irradiated lipofuscin granules exhibited an increase in fluorescence intensity in the short-wavelength region of 555 nm. This change is associated with an increase in the quantity of retinoid oxidation cytotoxic products after accelerated proton exposure. The radiation-induced oxidation of retinoids caused a noticeable change in its fluorescent properties allows us to consider this phenomenon as a potential opportunity for non-invasively assessment of the degree of radiation exposure and its relative biological effect in humans. Thus, this research proposes a new strategy for assessing the extent of radiation exposure to humans, which evaluates the effects of ionizing radiation on human eye tissues. This approach is based on the principles of the modern non-invasive method of fundus autofluorescence used in ophthalmology for the diagnosis of the retina and retinal pigment epithelium degenerative diseases.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia.
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| | - Mikhail A Ostrovsky
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| |
Collapse
|
5
|
Moreno-Villanueva M, Jimenez-Chavez LE, Krieger S, Ding LH, Zhang Y, Babiak-Vazquez A, Berres M, Splinter S, Pauken KE, Schaefer BC, Crucian BE, Wu H. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts' blood cells in space. Front Immunol 2025; 15:1512578. [PMID: 39902046 PMCID: PMC11788081 DOI: 10.3389/fimmu.2024.1512578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction The impact of spaceflight on the immune system and mitochondria has been investigated for decades. However, the molecular mechanisms underlying spaceflight-induced immune dysregulations are still unclear. Methods In this study, blood from eleven crewmembers was collected before and during International Space Station (ISS) missions. Transcriptomic analysis was performed in isolated peripheral blood mononuclear cells (PBMCs) using RNA-sequencing. Differentially expresses genes (DEG) in space were determined by comparing of the inflight to the preflight samples. Pathways and statistical analyses of these DEG were performed using the Ingenuity Pathway Analysis (IPA) tool. Results In comparison to pre-flight, a total of 2030 genes were differentially expressed in PBMC collected between 135 and 210 days in orbit, which included a significant number of surface receptors. The dysregulated genes and pathways were mostly involved in energy and oxygen metabolism, immune responses, cell adhesion/migration and cell death/survival. Discussion Based on the DEG and the associated pathways and functions, we propose that mitochondria dysfunction was caused by constant modulation of mechano-sensing receptors in microgravity, which triggered a signaling cascade that led to calcium overloading in mitochondria. The response of PBMC in space shares T-cell exhaustion features, likely initiated by microgravity than by infection. Consequences of mitochondria dysfunction include immune dysregulation and prolonged cell survival which potentially explains the reported findings of inhibition of T cell activation and telomere lengthening in astronauts. Conclusion Our study potentially identifies the upstream cause of mitochondria dysfunction and the downstream consequences in immune cells.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Luis E. Jimenez-Chavez
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | | | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ye Zhang
- National Aeronautics and Space Administration, Kennedy Space Center, Cape Canaveral, FL, United States
| | - Adriana Babiak-Vazquez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mark Berres
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Sandra Splinter
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Brian E. Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Honglu Wu
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
6
|
Sampige R, Ong J, Waisberg E, Zaman N, Sarker P, Tavakkoli A, Lee AG. XR-SANS: a multi-modal framework for analyzing visual changes with extended reality (XR) in Spaceflight Associated Neuro-Ocular Syndrome (SANS). Eye (Lond) 2024; 38:2680-2685. [PMID: 38802484 PMCID: PMC11427693 DOI: 10.1038/s41433-024-03147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Ritu Sampige
- School of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA.
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, MA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Waisberg E, Ong J, Paladugu P, Kamran SA, Zaman N, Tavakkoli A, Lee AG. Radiation-induced ophthalmic risks of long duration spaceflight: Current investigations and interventions. Eur J Ophthalmol 2024; 34:1337-1345. [PMID: 38151034 DOI: 10.1177/11206721231221584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
PURPOSE As the average duration of space missions increases, astronauts will experience longer periods of exposure to risks of long duration space flight including microgravity and radiation. The risks from long-term exposure to space radiation remains ill-defined. We review the current literature on the possible and known risks of radiation on the eye (including radiation retinopathy) after long duration spaceflight. METHODS A PubMed and Google Scholar search of the English language ophthalmic literature was performed from inception to July 11, 2022. The following search terms were utilized independently or in conjunction to build this manuscript: "Radiation Retinopathy", "Spaceflight", "Space Radiation", "Spaceflight Associated Neuro-Ocular Syndrome", "Microgravity", "Hypercapnia", "Radiation Shield", "Cataract", and "SANS". A concise and selective approach of references was conducted in including relevant original studies and reviews. RESULTS A total of 65 papers were reviewed and 47 papers were included in our review. CONCLUSION We discuss the potential and developing countermeasures to mitigate these radiation risks in preparation for future space exploration. Given the complex nature of space radiation, no single approach will fully reduce the risks of developing radiation maculopathy in long-duration spaceflight. Understanding and appropriately overcoming the risks of space radiation is key to becoming a multi-planetary species.
Collapse
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Joshua Ong
- Department of Ophthalmology, Michigan Medicine, University of Michigan, Ann Arbor, USA
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, USA
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas A&M College of Medicine, Bryant, Texas, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Waisberg E, Ong J, Lee AG. Coordinated lunar time (LTC): Implications of a lunar-centric time zone on astronaut health and space medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:72-73. [PMID: 39067993 DOI: 10.1016/j.lssr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/30/2024]
Abstract
Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.
Collapse
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M College of Medicine, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
9
|
Park J, Overbey EG, Narayanan SA, Kim J, Tierney BT, Damle N, Najjar D, Ryon KA, Proszynski J, Kleinman A, Hirschberg JW, MacKay M, Afshin EE, Granstein R, Gurvitch J, Hudson BM, Rininger A, Mullane S, Church SE, Meydan C, Church G, Beheshti A, Mateus J, Mason CE. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat Commun 2024; 15:4773. [PMID: 38862494 PMCID: PMC11166909 DOI: 10.1038/s41467-024-48625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.
Collapse
Affiliation(s)
- Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Ashley Kleinman
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Granstein
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Gurvitch
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Waisberg E, Ong J, Masalkhi M, Mao XW, Beheshti A, Lee AG. Mitochondrial dysfunction in Spaceflight Associated Neuro-Ocular Syndrome (SANS): a molecular hypothesis in pathogenesis. Eye (Lond) 2024; 38:1409-1411. [PMID: 38326485 PMCID: PMC11126720 DOI: 10.1038/s41433-024-02951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Mouayad Masalkhi
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Xiao W Mao
- Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University Health, Loma Linda, CA, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Texas, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
11
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Masalkhi M, Ong J, Waisberg E, Lee AG. Ocular oxidative changes and antioxidant therapy during spaceflight. Eye (Lond) 2024; 38:1034-1035. [PMID: 38001279 PMCID: PMC11009295 DOI: 10.1038/s41433-023-02841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Affiliation(s)
- Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Neikirk K, Stephens DC, Beasley HK, Marshall AG, Gaddy JA, Damo SM, Hinton A. Is space the final frontier for mitochondrial study? Biotechniques 2024; 76:46-51. [PMID: 38084381 DOI: 10.2144/btn-2023-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Tweetable abstract This perspective considers several avenues for future research on mitochondrial dynamics, stress, and DNA in outer space.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Heather K Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven M Damo
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Feldman T, Yakovleva M, Utina D, Ostrovsky M. Short-Term and Long-Term Effects after Exposure to Ionizing Radiation and Visible Light on Retina and Retinal Pigment Epithelium of Mouse Eye. Int J Mol Sci 2023; 24:17049. [PMID: 38069372 PMCID: PMC10707529 DOI: 10.3390/ijms242317049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
A comparative in vivo study of the effects of ionizing radiation (accelerated protons) and visible light (400-700 nm) on the retina and retinal pigment epithelium (RPE) of the mouse eye was carried out. Using the methods of fluorescence spectroscopy and high-performance liquid chromatography (HPLC), we analyzed the relative composition of retinoids in chloroform extracts obtained from the retinas and RPEs immediately after exposure of animals to various types of radiation and 4.5 months after they were exposed and maintained under standard conditions throughout the period. The fluorescent properties of chloroform extracts were shown to change upon exposure to various types of radiation. This fact indicates the accumulation of retinoid oxidation and degradation products in the retina and RPE. The data from fluorescence and HPLC analyses of retinoids indicate that when exposed to ionizing radiation, retinoid oxidation processes similar to photooxidation occur. Both ionizing radiation and high-intensity visible light have been shown to be characterized by long-term effects. The action of any type of radiation is assumed to activate the mechanism of enhanced reactive oxygen species production, resulting in a long-term damaging effect.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Dina Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia;
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
15
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
16
|
Meer E, Grob S, Antonsen EL, Sawyer A. Ocular conditions and injuries, detection and management in spaceflight. NPJ Microgravity 2023; 9:37. [PMID: 37193709 DOI: 10.1038/s41526-023-00279-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Ocular trauma or other ocular conditions can be significantly debilitating in space. A literature review of over 100 articles and NASA evidence books, queried for eye related trauma, conditions, and exposures was conducted. Ocular trauma and conditions during NASA space missions during the Space Shuttle Program and ISS through Expedition 13 in 2006 were reviewed. There were 70 corneal abrasions, 4 dry eyes, 4 eye debris, 5 complaints of ocular irritation, 6 chemical burns, and 5 ocular infections noted. Unique exposures on spaceflight, such as foreign bodies, including celestial dust, which may infiltrate the habitat and contact the ocular surface, as well as chemical and thermal injuries due to prolonged CO2 and heat exposure were reported. Diagnostic modalities used to evaluate the above conditions in space flight include vision questionnaires, visual acuity and Amsler grid testing, fundoscopy, orbital ultrasound, and ocular coherence tomography. Several types of ocular injuries and conditions, mostly affecting the anterior segment, are reported. Further research is necessary to understand the greatest ocular risks that astronauts face and how better we can prevent, but also diagnose and treat these conditions in space.
Collapse
Affiliation(s)
- Elana Meer
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- University of California Space Health Program, San Francisco, CA, USA
| | - Seanna Grob
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Erik L Antonsen
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houstan, Texas, USA
| | - Aenor Sawyer
- University of California Space Health Program, San Francisco, CA, USA.
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Mao X, Stanbouly S, Holley J, Pecaut M, Crapo J. Evidence of Spaceflight-Induced Adverse Effects on Photoreceptors and Retinal Function in the Mouse Eye. Int J Mol Sci 2023; 24:ijms24087362. [PMID: 37108526 PMCID: PMC10138634 DOI: 10.3390/ijms24087362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The goal of the present study was to characterize acute oxidative damage in ocular structure and retinal function after exposure to spaceflight, and to evaluate the efficacy of an antioxidant in reducing spaceflight-induced changes in the retina. Ten-week-old adult C57BL/6 male mice were flown aboard the ISS on Space-X 24 over 35 days, and returned to Earth alive. The mice received a weekly injection of a superoxide dismutase mimic, MnTnBuOE-2-PyP 5+ (BuOE), before launch and during their stay onboard the ISS. Ground control mice were maintained on Earth under identical environmental conditions. Before the launch, intraocular pressure (IOP) was measured using a handheld tonometer and retinal function was evaluated using electroretinogram (ERG). ERG signals were recorded when the mouse eye was under dark-adapted conditions in response to ultraviolet monochromatic light flashes. Within 20 h after splashdown, IOP and ERG assessments were repeated before euthanasia. There were significant increases in body weight for habitat control groups post-flight compared to pre-flight measurements. However, the body weights were similar among flight groups before launch and after splashdown. The IOP measurements were similar between pre- and post-flight groups with no significant differences between BuOE-treated and saline controls. Immunofluorescence evaluation showed increases in retinal oxidative stress and apoptotic cell death after spaceflight. BuOE treatment significantly decreased the level of the oxidative stress biomarker. ERG data showed that the average amplitudes of the a- and b-wave were significantly decreased (39% and 32% by spaceflight, respectively) compared to that of habitat ground controls. These data indicate that spaceflight conditions induce oxidative stress in the retina, which may lead to photoreceptor cell damage and retinal function impairment.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92350, USA
| | - Jacob Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92350, USA
| | - Michael Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92350, USA
| | - James Crapo
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
18
|
Simulated microgravity reduces quality of ovarian follicles and oocytes by disrupting communications of follicle cells. NPJ Microgravity 2023; 9:7. [PMID: 36690655 PMCID: PMC9870914 DOI: 10.1038/s41526-023-00248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ovarian follicles are the fundamental structures that support oocyte development, and communications between oocytes and follicle somatic cells are crucial for oogenesis. However, it is unknown that whether exposure to microgravity influences cellular communications and ovarian follicle development, which might be harmful for female fertility. By 3D culturing of ovarian follicles under simulated microgravity (SMG) conditions in a rotating cell culture system, we found that SMG treatment did not affect the survival or general growth of follicles but decreased the quality of cultured follicles released oocytes. Ultrastructure detections by high-resolution imaging showed that the development of cellular communicating structures, including granulosa cell transzonal projections and oocyte microvilli, were markedly disrupted. These abnormalities caused chaotic polarity of granulosa cells (GCs) and a decrease in oocyte-secreted factors, such as Growth Differentiation Factor 9 (GDF9), which led to decreased quality of oocytes in these follicles. Therefore, the quality of oocytes was dramatically improved by the supplementations of GDF9 and NADPH-oxidase inhibitor apocynin. Together, our results suggest that exposure to simulated microgravity impairs the ultrastructure of ovarian follicles. Such impairment may affect female fertility in space environment.
Collapse
|
19
|
Nguyen HP, Shin S, Shin KJ, Tran PH, Park H, De Tran Q, No MH, Sun JS, Kim KW, Kwak HB, Lee S, Cho SK, Yang SG. Protective effect of TPP-Niacin on microgravity-induced oxidative stress and mitochondrial dysfunction of retinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119384. [PMID: 36302465 DOI: 10.1016/j.bbamcr.2022.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Adverse effects of spaceflight on the human body are attritubuted to microgravity and space radiation. One of the most sensitive organs affected by them is the eye, particularly the retina. The conditions that astronauts suffer, such as visual acuity, is collectively called a spaceflight-associated neuro-ocular syndrome (SANS); however, the underlying molecular mechanism of the microgravity-induced ocular pathogenesis is not clearly understood. The current study explored how microgravity affects the retina function in ARPE19 cells in vitro under time-averaged simulated microgravity (μG) generated by clinostat. We found multicellular spheroid (MCS) formation and a significantly decreased cell migration potency under μG conditions compared to 1G in ARPE19 cells. We also observed that μG increases intracellular reactive oxygen species (ROS) and causes mitochondrial dysfunction in ARPE19 cells. Subsequently, we showed that μG activates autophagic pathways and ciliogenesis. Furthermore, we demonstrated that mitophagy activation is triggered via the mTOR-ULK1-BNIP3 signaling axis. Finally, we validated the effectiveness of TPP-Niacin in mitigating μG-induced oxidative stress and mitochondrial dysfunction in vitro, which provides the first experimental evidence for TPP-Niacin as a potential therapeutic agent to ameliorate the cellular phenotypes caused by μG in ARPE19 cells. Further investigations are, however, required to determine its physiological functions and biological efficacies in primary human retinal cells, in vivo models, and target identification.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Seungheon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyung-Ju Shin
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Phuong Hoa Tran
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Hyungsun Park
- Department of Anatomy, College of Medicine, BK21 FOUR Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Quang De Tran
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Mi-Hyun No
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Ji Su Sun
- Departments of Oral Biology and Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Seongju Lee
- Department of Anatomy, College of Medicine, BK21 FOUR Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Steve K Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Su-Geun Yang
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; Department of Biomedical Science, BK21 FOUR program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22332, Republic of Korea.
| |
Collapse
|
20
|
Rosenstein AH, Walker VK. Fidelity of a Bacterial DNA Polymerase in Microgravity, a Model for Human Health in Space. Front Cell Dev Biol 2021; 9:702849. [PMID: 34912795 PMCID: PMC8666419 DOI: 10.3389/fcell.2021.702849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term space missions will expose crew members, their cells as well as their microbiomes to prolonged periods of microgravity and ionizing radiation, environmental stressors for which almost no earth-based organisms have evolved to survive. Despite the importance of maintaining genomic integrity, the impact of these stresses on DNA polymerase-mediated replication and repair has not been fully explored. DNA polymerase fidelity and replication rates were assayed under conditions of microgravity generated by parabolic flight and compared to earth-like gravity. Upon commencement of a parabolic arc, primed synthetic single-stranded DNA was used as a template for one of two enzymes (Klenow fragment exonuclease+/-; with and without proofreading exonuclease activity, respectively) and were quenched immediately following the 20 s microgravitational period. DNA polymerase error rates were determined with an algorithm developed to identify experimental mutations. In microgravity Klenow exonuclease+ showed a median 1.1-fold per-base decrease in polymerization fidelity for base substitutions when compared to earth-like gravity (p = 0.02), but in the absence of proofreading activity, a 2.4-fold decrease was observed (p = 1.98 × 10-11). Similarly, 1.1-fold and 1.5-fold increases in deletion frequencies in the presence or absence of exonuclease activity (p = 1.51 × 10-7 and p = 8.74 × 10-13), respectively, were observed in microgravity compared to controls. The development of this flexible semi-autonomous payload system coupled with genetic and bioinformatic approaches serves as a proof-of-concept for future space health research.
Collapse
Affiliation(s)
- Aaron H Rosenstein
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Sihver L, Mortazavi SMJ. Biological Protection in Deep Space Missions. J Biomed Phys Eng 2021; 11:663-674. [PMID: 34904063 PMCID: PMC8649166 DOI: 10.31661/jbpe.v0i0.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023]
Abstract
During deep space missions, astronauts are exposed to highly ionizing radiation, incl. neutrons, protons and heavy ions from galactic cosmic rays (GCR), solar wind (SW) and solar energetic particles
(SEP). This increase the risks for cancerogenisis, damages in central nervous system (CNS), cardiovascular diseases, etc. Large SEP events can even cause acute radiation syndrome (ARS).
Long term manned deep space missions will therefor require unique radiation protection strategies. Since it has been shown that physical shielding alone is not sufficient, this paper
propose pre-flight screening of the aspirants for evaluation of their level of adaptive responses. Methods for boosting their immune system, should also be further investigated,
and the possibility of using radiation effect modulators are discussed. In this paper, especially, the use of vitamin C as a promising non-toxic, cost-effective, easily available
radiation mitigator (which can be used hours after irradiation), is described. Although it has previously been shown that vitamin C can decrease radiation-induced chromosomal damage in rodents,
it must be further investigated before any conclusions about its radiation mitigating properties in humans can be concluded.
Collapse
Affiliation(s)
- Lembit Sihver
- PhD, Department of Radiation Physics, Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- PhD, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | |
Collapse
|
22
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
23
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
24
|
The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 2021; 7:44. [PMID: 34750383 PMCID: PMC8575887 DOI: 10.1038/s41526-021-00171-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Astronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.
Collapse
|
25
|
Chen Z, Stanbouly S, Nishiyama NC, Chen X, Delp MD, Qiu H, Mao XW, Wang C. Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina. PRECISION CLINICAL MEDICINE 2021; 4:93-108. [PMID: 34179686 PMCID: PMC8220224 DOI: 10.1093/pcmedi/pbab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 01/30/2023] Open
Abstract
Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.
Collapse
Affiliation(s)
- Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Seta Stanbouly
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nina C Nishiyama
- Division of Radiation Research, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xin Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Xiao W Mao
- Division of Radiation Research, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
26
|
A Protective Strategy to Counteract the Oxidative Stress Induced by Simulated Microgravity on H9C2 Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9951113. [PMID: 33986919 PMCID: PMC8079188 DOI: 10.1155/2021/9951113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Microgravity affects human cardiovascular function inducing heart rhythm disturbances and even cardiac atrophy. The mechanisms triggered by microgravity and the search for protection strategies are difficult to be investigated in vivo. This study is aimed at investigating the effects induced by simulated microgravity on a cardiomyocyte-like phenotype. The Random Positioning Machine (RPM), set in a CO2 incubator, was used to simulate microgravity, and H9C2 cell line was used as the cardiomyocyte-like model. H9C2 cells were exposed to simulated microgravity up to 96 h, showing a slower cell proliferation rate and lower metabolic activity in comparison to cell grown at earth gravity. In exposed cells, these effects were accompanied by increased levels of intracellular reactive oxygen species (ROS), cytosolic Ca2+, and mitochondrial superoxide anion. Protein carbonyls, markers of protein oxidation, were significantly increased after the first 48 h of exposition in the RPM. In these conditions, the presence of an antioxidant, the N-acetylcysteine (NAC), counteracted the effects induced by the simulated microgravity. In conclusion, these data suggest that simulated microgravity triggers a concomitant increase of intracellular ROS and Ca2+ levels and affects cell metabolic activity which in turn could be responsible for the slower proliferative rate. Nevertheless, the very low number of detectable dead cells and, more interestingly, the protective effect of NA, demonstrate that simulated microgravity does not have “an irreversible toxic effect” but, affecting the oxidative balance, results in a transient slowdown of proliferation.
Collapse
|
27
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
28
|
Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020; 11:564950. [PMID: 33224136 PMCID: PMC7667275 DOI: 10.3389/fimmu.2020.564950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,KBR, Houston, TX, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
29
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
30
|
Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space Habitation. Sci Rep 2020; 10:2336. [PMID: 32047211 PMCID: PMC7012842 DOI: 10.1038/s41598-020-58898-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Animal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA’s Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.
Collapse
|
31
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
32
|
Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020; 18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility. RECENT FINDINGS In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes). Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA.
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA.
| |
Collapse
|
33
|
Barker R, Lombardino J, Rasmussen K, Gilroy S. Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments. FRONTIERS IN PLANT SCIENCE 2020; 11:147. [PMID: 32265943 PMCID: PMC7076552 DOI: 10.3389/fpls.2020.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 05/04/2023]
Abstract
Recent advances in the routine access to space along with increasing opportunities to perform plant growth experiments on board the International Space Station have led to an ever-increasing body of transcriptomic, proteomic, and epigenomic data from plants experiencing spaceflight. These datasets hold great promise to help understand how plant biology reacts to this unique environment. However, analyses that mine across such expanses of data are often complex to implement, being impeded by the sheer number of potential comparisons that are possible. Complexities in how the output of these multiple parallel analyses can be presented to the researcher in an accessible and intuitive form provides further barriers to such research. Recent developments in computational systems biology have led to rapid advances in interactive data visualization environments designed to perform just such tasks. However, to date none of these tools have been tailored to the analysis of the broad-ranging plant biology spaceflight data. We have therefore developed the Test Of Arabidopsis Space Transcriptome (TOAST) database (https://astrobiology.botany.wisc.edu/astrobotany-toast) to address this gap in our capabilities. TOAST is a relational database that uses the Qlik database management software to link plant biology, spaceflight-related omics datasets, and their associated metadata. This environment helps visualize relationships across multiple levels of experiments in an easy to use gene-centric platform. TOAST draws on data from The US National Aeronautics and Space Administration's (NASA's) GeneLab and other data repositories and also connects results to a suite of web-based analytical tools to facilitate further investigation of responses to spaceflight and related stresses. The TOAST graphical user interface allows for quick comparisons between plant spaceflight experiments using real-time, gene-specific queries, or by using functional gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, or other filtering systems to explore genetic networks of interest. Testing of the database shows that TOAST confirms patterns of gene expression already highlighted in the literature, such as revealing the modulation of oxidative stress-related responses across multiple plant spaceflight experiments. However, this data exploration environment can also drive new insights into patterns of spaceflight responsive gene expression. For example, TOAST analyses highlight changes to mitochondrial function as likely shared responses in many plant spaceflight experiments.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Jonathan Lombardino
- Department of Botany, University of Wisconsin, Madison, WI, United States
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, United States
| | - Kai Rasmussen
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, United States
- *Correspondence: Simon Gilroy,
| |
Collapse
|
34
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
35
|
Overbey EG, da Silveira WA, Stanbouly S, Nishiyama NC, Roque-Torres GD, Pecaut MJ, Zawieja DC, Wang C, Willey JS, Delp MD, Hardiman G, Mao XW. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Sci Rep 2019; 9:13304. [PMID: 31527661 PMCID: PMC6746706 DOI: 10.1038/s41598-019-49453-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 11/08/2022] Open
Abstract
Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were maintained on Earth under identical environmental conditions. Within 38 (+/-4) hours after splashdown, mice ocular tissues were collected for analysis. RNA sequencing detected 600 differentially expressed genes (DEGs) in murine spaceflight retinas, which were enriched for genes related to visual perception, the phototransduction pathway, and numerous retina and photoreceptor phenotype categories. Twelve DEGs were associated with retinitis pigmentosa, characterized by dystrophy of the photoreceptor layer rods and cones. Differentially expressed transcription factors indicated changes in chromatin structure, offering clues to the observed phenotypic changes. Immunofluorescence assays showed degradation of cone photoreceptors and increased retinal oxidative stress. Total retinal, retinal pigment epithelium, and choroid layer thickness were significantly lower after spaceflight. These results indicate that retinal performance may decrease over extended periods of spaceflight and cause visual impairment.
Collapse
Affiliation(s)
- Eliah G Overbey
- University of Washington, Department of Genome Sciences, Seattle, WA, USA.
| | - Willian Abraham da Silveira
- Queen's University Belfast, Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, 92350, USA
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, 92350, USA
| | | | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, 92350, USA
| | - David Carl Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, Texas, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Gary Hardiman
- Queen's University Belfast, Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
36
|
Jiang P, Green SJ, Chlipala GE, Turek FW, Vitaterna MH. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. MICROBIOME 2019; 7:113. [PMID: 31399081 PMCID: PMC6689164 DOI: 10.1186/s40168-019-0724-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/23/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive. METHODS We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis. RESULTS We report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation. CONCLUSIONS These observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL USA
| | - Stefan J. Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA
| | - George E. Chlipala
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL USA
| |
Collapse
|
37
|
Bevelacqua JJ, Welsh J, Mortazavi SMJ. Commentary: Introduction to the Frontiers Research Topic: Optimization of Exercise Countermeasures for Human Space Flight-Lessons From Terrestrial Physiology and Operational Considerations. Front Physiol 2019; 10:915. [PMID: 31379613 PMCID: PMC6659347 DOI: 10.3389/fphys.2019.00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - James Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, United States
| | - S M J Mortazavi
- Medical Physics Department, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
38
|
Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Drew A, Sridharan V, Boerma M, Tackett AJ, Zawieja D, Willey JS, Delp M, Pecaut MJ. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep 2019; 9:8215. [PMID: 31160660 PMCID: PMC6547757 DOI: 10.1038/s41598-019-44696-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
The health risks associated with spaceflight-induced ocular structural and functional damage has become a recent concern for NASA. The goal of the present study was to characterize the effects of spaceflight and reentry to 1 g on the structure and integrity of the retina and blood-retinal barrier (BRB) in the eye. To investigate possible mechanisms, changes in protein expression profiles were examined in mouse ocular tissue after spaceflight. Ten week old male C57BL/6 mice were launched to the International Space Station (ISS) on Space-X 12 at the Kennedy Space Center (KSC) on August, 2017. After a 35-day mission, mice were returned to Earth alive. Within 38 +/− 4 hours of splashdown, mice were euthanized and ocular tissues were collected for analysis. Ground control (GC) and vivarium control mice were maintained on Earth in flight hardware or normal vivarium cages respectively. Repeated intraocular pressure (IOP) measurements were performed before the flight launch and re-measured before the mice were euthanized after splashdown. IOP was significantly lower in post-flight measurements compared to that of pre-flight (14.4–19.3 mmHg vs 16.3–20.3 mmHg) (p < 0.05) for the left eye. Flight group had significant apoptosis in the retina and retinal vascular endothelial cells compared to control groups (p < 0.05). Immunohistochemical analysis of the retina revealed that an increased expression of aquaporin-4 (AQP-4) in the flight mice compared to controls gave strong indication of disturbance of BRB integrity. There were also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BRB-related tight junction protein, Zonula occludens-1 (ZO-1). Proteomic analysis showed that many key proteins and pathways responsible for cell death, cell cycle, immune response, mitochondrial function and metabolic stress were significantly altered in the flight mice compared to ground control animals. These data indicate a complex cellular response that may alter retina structure and BRB integrity following long-term spaceflight.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA.
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Alyson Drew
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - David Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, Texas, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| |
Collapse
|
39
|
Yatagai F, Honma M, Dohmae N, Ishioka N. Biological effects of space environmental factors: A possible interaction between space radiation and microgravity. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:113-123. [PMID: 30797428 DOI: 10.1016/j.lssr.2018.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
In the mid-1980s, space experiments began to examine if microgravity could alter the biological effects of space radiation. In the late 1990s, repair of DNA strand breaks was reported to not be influenced by microgravity using the pre-irradiated cells, because the exposure doses of space radiation were few due to the short spaceflight. There were, however, conflicting reports depending on the biological endpoints used in various systems. While almost no attempts were made to assess the possibility that the microgravity effects could be altered by space radiation. This was probably due to the general understanding that microgravity plays a major role in space and works independently from space radiation. Recent ground-based simulation studies focusing on DNA oxidative damage and signal transduction suggested that combined effects of microgravity and space radiation might exist. These studies also implicated the importance of research focusing not only on chromosomal DNA but also on cytoplasm, especially mitochondria. Therefore, we propose a new model which accounts for the combined-effects through the window of cellular responses. In this model, the interactions between microgravity and space radiation might occur during the following cellular-responses; (A) damaging and signaling by ROS, (B) damage responses on DNA (repair, replication, transcription, etc.), and (C) expression of gene and protein (regulation by chromatin, epigenetic control, etc.).
Collapse
Affiliation(s)
- Fumio Yatagai
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Center for Sustainable Resource Science, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Masamitsu Honma
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Noriaki Ishioka
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Department of Space and Astronautical Science, The Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan
| |
Collapse
|
40
|
Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J Mol Sci 2018; 19:ijms19123729. [PMID: 30477143 PMCID: PMC6320872 DOI: 10.3390/ijms19123729] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been implicated in the pathophysiology of numerous terrestrial disease processes and associated with morbidity following spaceflight. Furthermore, oxidative stress has long been considered a causative agent in adverse reproductive outcomes. The purpose of this review is to summarize the pathogenesis of oxidative stress caused by cosmic radiation and microgravity, review the relationship between oxidative stress and reproductive outcomes in females, and explore what role spaceflight-induced oxidative damage may have on female reproductive and developmental outcomes.
Collapse
|
41
|
Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, Sridharan V, Nishiyama NC, Wroe A, Nelson GA. Combined Effects of Low-Dose Proton Radiation and Simulated Microgravity on the Mouse Retina and the Hematopoietic System. Radiat Res 2018; 192:241-250. [PMID: 30430917 DOI: 10.1667/rr15219.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of the current study was to characterize the effects of simulated microgravity and radiation-induced changes in retina and retinal vasculature, and to assess the accompanying early changes in immune cells and hematological parameters. To better understand the effects of spaceflight, we used a combination of treatments designed to simulate both the radiation and low-gravity aspects of space conditions. To simulate the broad energy spectrum of a large solar particle event (SPE) and galactic cosmic ray (GCR) radiation, male C57BL/6J mice were exposed to whole-body irradiation using fully modulated beams of 150-MeV protons containing particles of energy from 0 to 150 MeV and a uniform dose-vs.-depth profile. The mice were also hindlimb-unloaded (HLU) by tail suspension. Mice were unloaded for 7 days, exposed to 50 cGy, unloaded for an additional 7 days and then sacrificed for tissue isolation at days 4 and 30 after the combined treatments. Increases in the number of apoptotic cells were observed in the endothelial cells of mice that received radiation alone or with HLU compared to controls at both days 4 and 30 (P < 0.05). Endothelial nitric oxide synthase (eNOS) levels were significantly elevated in the retina after irradiation only or combined with HLU compared to controls at the 30-day time point (P < 0.05). The most robust changes were observed in the combination group, suggesting a synergistic response to radiation and unloading. For hematopoietic parameters, our analysis indicated the main effects for time and radiation at day 4 after treatments (day 11 postirradiation) (P < 0.05), but a smaller influence of HLU for both white blood cell and lymphocyte counts. The group treated with both radiation and HLU showed greater than 50% reduction in lymphocyte counts compared to controls. Radiation-dependent differences were also noted in specific lymphocyte subpopulations (T, B, natural killer cells). This study shows indications of an early effect of low-dose radiation and spaceflight conditions on retina and immune populations.
Collapse
Affiliation(s)
- X W Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - M Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - D Rodriguez
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - M Campbell-Beachler
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - T Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - S Stanbouly
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - V Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - N C Nishiyama
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - A Wroe
- Department of Radiation Medicine, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - G A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| |
Collapse
|
42
|
Genchi GG, Degl'Innocenti A, Salgarella AR, Pezzini I, Marino A, Menciassi A, Piccirillo S, Balsamo M, Ciofani G. Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes. Nanomedicine (Lond) 2018; 13:2821-2833. [PMID: 30334476 DOI: 10.2217/nnm-2018-0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Oxidative stress (OS) is strictly associated with senescence/pathogenesis of biological systems. As putative countermeasure to environmental OS, cerium oxide nanoparticles (nanoceria [NC]) were administered to muscle cells on ground and aboard the International Space Station. MATERIALS & METHODS Transcriptional analyses were conducted through microarray technology and hierarchical clustering. Venn diagram and gene ontology analyses were also performed on selected gene lists. RESULTS Adaptive responses to both NC administration and to permanence in real microgravity conditions occurred. Enrichment in the biological processes related to aging, body fat development and mesodermal tissue proliferation for NC-treated samples were found. CONCLUSION Nanotechnology antioxidants promise applications to pathological conditions governed by OS on Earth and in life-hostile environments (low Earth orbit and deep space).
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Alice Rita Salgarella
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Ilaria Pezzini
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Arianna Menciassi
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Sara Piccirillo
- Agenzia Spaziale Italiana, Via del Politecnico snc, Roma 00133, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna 501, Livorno 57128, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy.,Politecnico di Torino, Department of Aerospace & Mechanical Engineering, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
43
|
Pavlakou P, Dounousi E, Roumeliotis S, Eleftheriadis T, Liakopoulos V. Oxidative Stress and the Kidney in the Space Environment. Int J Mol Sci 2018; 19:3176. [PMID: 30326648 PMCID: PMC6214023 DOI: 10.3390/ijms19103176] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
In space, the special conditions of hypogravity and exposure to cosmic radiation have substantial differences compared to terrestrial circumstances, and a multidimensional impact on the human body and human organ functions. Cosmic radiation provokes cellular and gene damage, and the generation of reactive oxygen species (ROS), leading to a dysregulation in the oxidants⁻antioxidants balance, and to the inflammatory response. Other practical factors contributing to these dysregulations in space environment include increased bone resorption, impaired anabolic response, and even difficulties in detecting oxidative stress in blood and urine samples. Enhanced oxidative stress affects mitochondrial and endothelial functions, contributes to reduced natriuresis and the development of hypertension, and may play an additive role in the formation of kidney stones. Finally, the composition of urine protein excretion is significantly altered, depicting possible tubular dysfunction.
Collapse
Affiliation(s)
- Paraskevi Pavlakou
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Theodoros Eleftheriadis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| |
Collapse
|
44
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
45
|
Mao XW, Byrum S, Nishiyama NC, Pecaut MJ, Sridharan V, Boerma M, Tackett AJ, Shiba D, Shirakawa M, Takahashi S, Delp MD. Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. Int J Mol Sci 2018; 19:E2546. [PMID: 30154332 PMCID: PMC6165321 DOI: 10.3390/ijms19092546] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Astronauts are reported to have experienced some impairment in visual acuity during their mission on the International Space Station (ISS) and after they returned to Earth. There is emerging evidence that changes in vision may involve alterations in ocular structure and function. To investigate possible mechanisms, changes in protein expression profiles and oxidative stress-associated apoptosis were examined in mouse ocular tissue after spaceflight. Nine-week-old male C57BL/6 mice (n = 12) were launched from the Kennedy Space Center on a SpaceX rocket to the ISS for a 35-day mission. The animals were housed in the mouse Habitat Cage Unit (HCU) in the Japan Aerospace Exploration Agency (JAXA) "Kibo" facility on the ISS. The flight mice lived either under an ambient microgravity condition (µg) or in a centrifugal habitat unit that produced 1 g artificial gravity (µg + 1 g). Habitat control (HC) and vivarium control mice lived on Earth in HCUs or normal vivarium cages, respectively. Quantitative assessment of ocular tissue demonstrated that the µg group induced significant apoptosis in the retina vascular endothelial cells compared to all other groups (p < 0.05) that was 64% greater than that in the HC group. Proteomic analysis showed that many key pathways responsible for cell death, cell repair, inflammation, and metabolic stress were significantly altered in µg mice compared to HC animals. Additionally, there were more significant changes in regulated protein expression in the µg group relative to that in the µg + 1 g group. These data provide evidence that spaceflight induces retinal apoptosis of vascular endothelial cells and changes in retinal protein expression related to cellular structure, immune response and metabolic function, and that artificial gravity (AG) provides some protection against these changes. These retinal cellular responses may affect blood⁻retinal barrier (BRB) integrity, visual acuity, and impact the potential risk of developing late retinal degeneration.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA 92350, USA.
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA..
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA 92350, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA 92350, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA..
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba 305-8505, Japan.
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba 305-8505, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
46
|
Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, Sridharan V, Wroe A, Nelson GA. Acute Effect of Low-Dose Space Radiation on Mouse Retina and Retinal Endothelial Cells. Radiat Res 2018; 190:45-52. [PMID: 29741442 DOI: 10.1667/rr14977.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is concern that degradation of vision as a result of space flight may compromise both mission goals and long-term quality of life after space travel. The visual disturbances may be due to a combination of intracerebral pressure changes and exposure to ionizing radiation. The retina and the retinal vasculature play important roles in vision, yet have not been studied extensively in relationship to space travel and space radiation. The goal of the current study was to characterize oxidative damage and apoptosis in retinal endothelial cells after whole-body gamma-ray, proton and oxygen (16O) ion radiation exposure at 0.1 to 1 Gy. Six-month-old male C57Bl/6J mice were whole-body irradiated with 600 MeV/n 16O ions (0, 0.1, 0.25, 1 Gy), solar particle event (SPE)-like protons (0, 0.1, 0.25, 0.5 Gy) or 60Co gamma rays (0, 0.1, 0.25, 0.5 Gy). Eyes were isolated for examining endothelial nitric oxide synthase (eNOS) expression and characterization of apoptosis in retina and retinal endothelial cells at two weeks postirradiation. The expression of eNOS was significantly increased in the retina after proton and 16O ion exposure. 16O ions induced over twofold increase in eNOS expression compared to proton exposure at two weeks postirradiation ( P < 0.05). TUNEL assays showed dose-dependent increases in apoptosis in the retina after irradiation. Low doses of 16O ions elicited apoptosis in the mouse retinal endothelial cells with the most robust changes observed after 0.1 Gy irradiation ( P < 0.05) compared to controls. Data also showed that 16O ions induced a higher frequency of apoptosis in retinal endothelial cells compared to protons ( P < 0.05). In summary, our study revealed that exposure to low-dose ionizing radiation induced oxidative damage and apoptosis in the retina. Significant changes in retinal endothelial cells occur at doses as low as 0.1 Gy. There were significant differences in the responses of endothelial cells among the radiation types examined here.
Collapse
Affiliation(s)
- X W Mao
- a Departments of Basic Sciences, Division of Radiation Research
| | - M Boerma
- c Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - D Rodriguez
- a Departments of Basic Sciences, Division of Radiation Research
| | | | - T Jones
- a Departments of Basic Sciences, Division of Radiation Research
| | - S Stanbouly
- a Departments of Basic Sciences, Division of Radiation Research
| | - V Sridharan
- c Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - A Wroe
- b Radiation Medicine, Loma Linda University School of Medicine and Medical Center, Loma Linda, California
| | - G A Nelson
- a Departments of Basic Sciences, Division of Radiation Research
| |
Collapse
|
47
|
Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2547532. [PMID: 29581965 PMCID: PMC5822892 DOI: 10.1155/2018/2547532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022]
Abstract
The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.
Collapse
|
48
|
Tahimic CGT, Globus RK. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int J Mol Sci 2017; 18:ijms18102153. [PMID: 29035346 PMCID: PMC5666834 DOI: 10.3390/ijms18102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- KBRWyle, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
49
|
Blaber EA, Pecaut MJ, Jonscher KR. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver. Int J Mol Sci 2017; 18:ijms18102062. [PMID: 28953266 PMCID: PMC5666744 DOI: 10.3390/ijms18102062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-‘omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.
Collapse
Affiliation(s)
- Elizabeth A Blaber
- Universities Space Research Association, Mountain View, CA 94040, USA.
- NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. Front Physiol 2017; 8:547. [PMID: 28824446 PMCID: PMC5539130 DOI: 10.3389/fphys.2017.00547] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
Collapse
Affiliation(s)
| | - Marco M Germani
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di MilanoMilan, Italy
| | - Ivana Barravecchia
- Department of Pharmacy, University of PisaPisa, Italy.,MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Claudio Passino
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy.,Fondazione Toscana G. MonasterioPisa, Italy
| | - Debora Angeloni
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| |
Collapse
|