1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
Fang F, Yu X, Wang X, Zhu X, Liu L, Rong L, Niu D, Li J. Transcriptomic profiling reveals gene expression in human peripheral blood after exposure to low-dose ionizing radiation. JOURNAL OF RADIATION RESEARCH 2022; 63:8-18. [PMID: 34788452 PMCID: PMC8776696 DOI: 10.1093/jrr/rrab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Indexed: 05/15/2023]
Abstract
Although the health effects of exposure to low-dose ionizing radiation have been the focus of many studies, the affected biological functions and underlying regulatory mechanisms are not well-understood. In particular, the influence of radiation exposure at doses of less than 200 mGy on the regulation of genes and pathways remains unclear. To investigate the molecular alterations induced by varying doses of low-dose radiation (LDR), transcriptomic analysis was conducted based on ribonucleic acid (RNA) sequencing following exposure to 50 and 150 mGy doses. Human peripheral blood was collected, and the samples were divided into three groups, including two treatments and one control (no radiation). A total of 876 (318 upregulated and 558 downregulated) and 486 (202 upregulated and 284 downregulated) differentially expressed genes (DEGs) were identified after exposure to 50 mGy and 150 mGy, respectively. Most upregulated genes in both the 50 mGy and 150 mGy groups were associated with 'antigen processing and presentation,' which appeared to be the major targets affected by LDR exposure. Several interacting genes, including HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-DRB5 were mapped to 'antigen processing and presentation,' 'immune system-related diseases' and the 'cytokine-mediated signaling pathway,' suggesting that these genes might drive the downstream transmission of these signal transduction pathways. Our results suggest that exposure to LDR may elicit changes in key genes and associated pathways, probably helping further explore the biological processes and molecular mechanism responsible for low-dose occupational or environmental exposures in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Li
- Corresponding author. Department of Scientific Research, Beijing Institute of Occupational Disease Prevention and Treatment (The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry), 50 Xiangshan Yikesong Road, Haidian District, Beijing 100093, China.
| |
Collapse
|
3
|
Canter BS, Leung CN, Fritton JC, Bäck T, Rajon D, Azzam EI, Howell RW. Radium-223-induced Bystander Effects Cause DNA Damage and Apoptosis in Disseminated Tumor Cells in Bone Marrow. Mol Cancer Res 2021; 19:1739-1750. [PMID: 34039648 DOI: 10.1158/1541-7786.mcr-21-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Radiation-induced bystander effects have been implicated in contributing to the growth delay of disseminated tumor cells (DTC) caused by 223RaCl2, an alpha particle-emitting radiopharmaceutical. To understand how 223RaCl2 affects the growth, we have quantified biological changes caused by direct effects of radiation and bystander effects caused by the emitted radiations on DTC and osteocytes. Characterizing these effects contribute to understanding the efficacy of alpha particle-emitting radiopharmaceuticals and guide expansion of their use clinically. MDA-MB-231 or MCF-7 human breast cancer cells were inoculated intratibially into nude mice that were previously injected intravenously with 50 or 600 kBq/kg 223RaCl2. At 1-day and 3-days postinoculation, tibiae were harvested and examined for DNA damage (γ-H2AX foci) and apoptosis in osteocytes and cancer cells located within and beyond the range (70 μm) of alpha particles emitted from the bone surface. Irradiated and bystander MDA-MB-231 and MCF-7 cells harbored DNA damage. Bystander MDA-MB-231 cells expressed DNA damage at both treatment levels while bystander MCF-7 cells required the higher administered activity. Osteocytes also had DNA damage regardless of inoculated cancer cell line. The extent of DNA damage was quantified by increases in low (1-2 foci), medium (3-5 foci), and high (5+ foci) damage. MDA-MB-231 but not MCF-7 bystander cells showed increases in apoptosis in 223RaCl2-treated animals, as did irradiated osteocytes. In summary, radiation-induced bystander effects contribute to DTC cytotoxicity caused by 223RaCl2. IMPLICATIONS: This observation supports clinical investigation of the efficacy of 223RaCl2 to prevent breast cancer DTC from progressing to oligometastases.
Collapse
Affiliation(s)
- Brian S Canter
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Calvin N Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - J Christopher Fritton
- Departments of Mechanical and Biomedical Engineering, City College of New York, New York, New York
| | - Tom Bäck
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Didier Rajon
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.,Radiobiology and Health Branch, Canadian Nuclear Laboratories, Ontario, Canada
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
4
|
Heeran AB, Berrigan HP, Buckley CE, Bottu HM, Prendiville O, Buckley AM, Clarke N, Donlon NE, Nugent TS, Durand M, Dunne C, Larkin JO, Mehigan B, McCormick P, Brennan L, Lynam-Lennon N, O'Sullivan J. Radiation-induced Bystander Effect (RIBE) alters mitochondrial metabolism using a human rectal cancer ex vivo explant model. Transl Oncol 2020; 14:100882. [PMID: 33129115 PMCID: PMC7586242 DOI: 10.1016/j.tranon.2020.100882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Locally advanced rectal cancer is treated with neoadjuvant-chemoradiotherapy, however only 22% of patients achieve a complete response. Resistance mechanisms are poorly understood. Radiation-induced Bystander Effect (RIBE) describes the effect of radiation on neighbouring unirradiated cells. We investigated the effects of ex vivo RIBE-induction from normal and rectal cancer tissue on bystander cell metabolism, mitochondrial function and metabolomic profiling. We correlated bystander events to patient clinical characteristics. Ex vivo RIBE-induction caused metabolic alterations in bystander cells, specifically reductions in OXPHOS following RIBE-induction in normal (p = 0.01) and cancer tissue (p = 0.03) and reduced glycolysis following RIBE-induction in cancer tissue (p = 0.01). Visceral fat area correlated with glycolysis (p = 0.02) and ATP production (p = 0.03) following exposure of cells to TCM from irradiated cancer biopsies. Leucine levels were reduced in the irradiated cancer compared to the irradiated normal secretome (p = 0.04). ROS levels were higher in cells exposed to the cancer compared to the normal secretome (p = 0.04). RIBE-induction ex vivo causes alterations in the metabolome in normal and malignant rectal tissue along with metabolic alterations in bystander cellular metabolism. This may offer greater understanding of the effects of RIBE on metabolism, mitochondrial function and the secreted metabolome. RIBE induction ex vivo alters mitochondrial metabolism in bystander cells. Rectal cancer secretome increases ROS in bystander cells. Higher leucine levels in the irradiated normal rectal secretome compared to the irradiated rectal cancer secretome Glycolysis and ATP levels in bystander cells correlate with patient's visceral fat area.
Collapse
Affiliation(s)
- Aisling B Heeran
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Helen P Berrigan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Croí E Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Heleena Moni Bottu
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin 4, Ireland
| | - Orla Prendiville
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin 4, Ireland
| | - Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Niamh Clarke
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Noel E Donlon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Timothy S Nugent
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | | - Cara Dunne
- GEMS, St. James's Hospital, Dublin 8, Ireland
| | | | | | | | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin 4, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
5
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
6
|
Heeran AB, Berrigan HP, O'Sullivan J. The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiat Res 2019; 192:668-679. [PMID: 31618121 DOI: 10.1667/rr15489.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation therapy is one of the pillars of cancer treatment, with approximately one half of all cancer patients receiving it as part of their standard of care. Emerging evidence indicates that the biological effects of radiation are not limited to targeted cells. The radiation-induced bystander effect (RIBE) refers to the plethora of biological phenomena occurring in nonirradiated cells as a result of signal transmission from an irradiated cell. Experimental evidence has linked RIBE to numerous hallmarks of cancer including resisting cell death, tumor immune evasion, genomic instability, deregulated cellular energetics, tumor-promoting inflammation and sustained proliferative signaling as well as enhanced radioresistance, thus highlighting the potential role of RIBE events in patient treatment response. The mechanisms underlying RIBE events in vivo are poorly understood. However, elucidating the molecular mechanisms involved in their manifestation may reveal novel therapeutic targets to improve radiation response in cancer patients.
Collapse
Affiliation(s)
- Aisling B Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Helen P Berrigan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
7
|
Relevance of Non-Targeted Effects for Radiotherapy and Diagnostic Radiology; A Historical and Conceptual Analysis of Key Players. Cancers (Basel) 2019; 11:cancers11091236. [PMID: 31450803 PMCID: PMC6770832 DOI: 10.3390/cancers11091236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Non-targeted effects (NTE) such as bystander effects or genomic instability have been known for many years but their significance for radiotherapy or medical diagnostic radiology are far from clear. Central to the issue are reported differences in the response of normal and tumour tissues to signals from directly irradiated cells. This review will discuss possible mechanisms and implications of these different responses and will then discuss possible new therapeutic avenues suggested by the analysis. Finally, the importance of NTE for diagnostic radiology and nuclear medicine which stems from the dominance of NTE in the low-dose region of the dose–response curve will be presented. Areas such as second cancer induction and microenvironment plasticity will be discussed.
Collapse
|
8
|
Mothersill C, Le M, Rusin A, Seymour C. BIOPHOTONS IN RADIOBIOLOGY: INHIBITORS, COMMUNICATORS AND REACTORS. RADIATION PROTECTION DOSIMETRY 2019; 183:136-141. [PMID: 30624751 DOI: 10.1093/rpd/ncy271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Radiation-induced bystander effects refer to the production of signals from irradiated cells which induce responses in unirradiated, or bystander, cells. There has been a recent resurgence of interest in low-energy photon biology. This is due to concerns about health effects, increased use of biophoton imaging techniques, and the fact that biophotons can act as a bystander signal. This review discusses the history of light signaling in biology and potential mechanisms involved in the generation and transduction of signaling mechanisms. The role of photons in signaling in the animal and plant kingdoms is also reviewed. Finally, the potential to harness these mechanisms in radiation protection or therapy is discussed with emphasis on promising future directions for research.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Michelle Le
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Andrej Rusin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Colin Seymour
- Medical Physics, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| |
Collapse
|
9
|
Rusin A, Lapied E, Le M, Seymour C, Oughton D, Haanes H, Mothersill C. Effect of gamma radiation on the production of bystander signals from three earthworm species irradiated in vivo. ENVIRONMENTAL RESEARCH 2019; 168:211-221. [PMID: 30317106 DOI: 10.1016/j.envres.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The effect of gamma radiation delivered over 24 h on the induction of bystander signals of three earthworm species exposed in vivo was investigated: A. chlorotica, A. caliginosa, and E. tetraedra. Worms were exposed to external gamma irradiation (Co-60 source) for 24 h and samples of head, body, and clitellum were dissected from exposed and control worms and placed in culture medium for 24 h at 19 C. The harvested medium was filtered and assayed for expression of bystander signals using both clonogenic and mitochondrial reporter assays. Different responses were observed in the different species and in the different tissues. A. chlorotica worm-treated reporters show insignificant mitochondrial response for all sections, yet a significant clonogenic reduction in survival for body sections. A. caliginosa worm-treated reporters show a significant mitochondrial response for some sections and insignificant mitochondrial response and insignificant reduction in clonogenic survival for the rest. E. tetraedra worms from a control site show significant evidence of bystander signalling, measured by mitochondrial response in reporter cells, for all sections while those harvested from a contaminated site show insignificant changes in baseline signalling when exposed to the challenge dose. In vivo exposure of earthworm species shows evidence of bystander signalling using two different reporter assays. This effect varied between the different species and tissues. There is also evidence of attenuated bystander signalling in worms harvested from a site contaminated with radiation.
Collapse
Affiliation(s)
- Andrej Rusin
- Dept. of Biology, McMaster University, Hamilton, ON, Canada.
| | - Emmanuel Lapied
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, PO Box 5003, 1430 Aas, Norway
| | - Michelle Le
- Dept. of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin Seymour
- Dept. of Biology, McMaster University, Hamilton, ON, Canada
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, PO Box 5003, 1430 Aas, Norway
| | - Hallvard Haanes
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, PO Box 5003, 1430 Aas, Norway; Norwegian Radiation Protection Authority (NRPA), Østerås, Norway
| | | |
Collapse
|
10
|
Curtis JJ, Seymour CB, Mothersill CE. Cell Line-Specific Direct Irradiation and Bystander Responses are Influenced by Fetal Bovine Serum Serotonin Concentrations. Radiat Res 2018; 190:262-270. [PMID: 29963973 DOI: 10.1667/rr15072.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The radiation-induced bystander effect is mechanistically complex, involving many different signaling components. Serotonin, present in fetal bovine serum (FBS), has been implicated in the modulation of cellular responses to radiation. However, the role of this ubiquitous signaling molecule has yet to be elucidated with regard to cell line-specific radiation responses. In this study, cell survival was measured in HCT116 p53 wild-type (HCT116+/+) and HaCaT cell cultures treated with media containing serotonin-depleted FBS and compared to our standard FBS-supplemented media, using clonogenic assays. We utilized an enzyme-linked immunosorbent assay to quantify the difference (4.3 ± 1.3 ng/ml) in serotonin concentrations among the media. Serotonin-depleted media significantly reduced survival in both nonirradiated cell lines. Furthermore, we sought to determine the effects to cells in this media exposed to direct irradiation as well as bystander media from irradiated cells. Cell survival was significantly increased when HCT116+/+ cells were directly irradiated in serotonin-depleted media, while HaCaT cells showed no significant difference in survival between the media. Bystander investigations demonstrated that HCT116+/+ cells were only able to generate a bystander effect when cultured in standard media conditions containing greater serotonin levels. Conversely, HaCaT cells were unaffected by the different media in terms of producing a bystander response, generating bystander effects irrespective of the media. Previous research linking serotonin receptors to the bystander effect, together with our results, indicate that receptor heterogeneity among cell types may underlie serotonin sensitivity in direct irradiation and bystander responses through serotonin receptor-mediated cell signaling cascades.
Collapse
Affiliation(s)
- Jacob J Curtis
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
11
|
Mothersill C, Seymour C. Old Data-New Concepts: Integrating "Indirect Effects" Into Radiation Protection. HEALTH PHYSICS 2018; 115:170-178. [PMID: 29787443 DOI: 10.1097/hp.0000000000000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To address the following key question, what are the consequences of nontargeted and delayed effects for linear nonthreshold models of radiation risk? This paper considers low-dose "indirect" or nontargeted effects and how they might impact radiation protection, particularly at the level of the environment. Nontargeted effects refer to effects in cells, tissues, or organisms that were not targeted by irradiation and that did not receive direct energy deposition. They include genomic instability and lethal mutations in progeny of irradiated cells and bystander effects in neighboring cells, tissues, or organisms. Low-dose hypersensitivity and adaptive responses are sometimes included under the nontargeted effects umbrella, but these are not considered in this paper. Some concepts emerging in the nontargeted effects field that could be important include historic dose. This suggests that the initial exposure to radiation initiates the instability phenotype which is passed to progeny leading to a transgenerational radiation-response phenotype, which suggests that the system response rather than the individual response is critical in determining outcome. CONCLUSION Nontargeted effects need to be considered, and modeling, experimental, and epidemiological approaches could all be used to determine the impact of nontargeted effects on the currently used linear nonthreshold model in radiation protection.
Collapse
Affiliation(s)
- Carmel Mothersill
- 1Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
12
|
Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol 2017; 94:696-707. [DOI: 10.1080/09553002.2017.1398436] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
13
|
Bill MA, Srivastava K, Breen C, Butterworth KT, McMahon SJ, Prise KM, McCloskey KD. Dual effects of radiation bystander signaling in urothelial cancer: purinergic-activation of apoptosis attenuates survival of urothelial cancer and normal urothelial cells. Oncotarget 2017; 8:97331-97343. [PMID: 29228614 PMCID: PMC5722566 DOI: 10.18632/oncotarget.21995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/26/2017] [Indexed: 01/29/2023] Open
Abstract
Radiation therapy (RT) delivers tumour kill, directly and often via bystander mechanisms. Bladder toxicity is a dose limiting constraint in pelvic RT, manifested as radiation cystitis and urinary symptoms. We aimed to investigate the impact of radiation-induced bystander signaling on normal/cancer urothelial cells. Human urothelial cancer cells T24, HT1376 and normal urothelial cells HUC, SV-HUC were used. Cells were irradiated and studied directly, or conditioned medium from irradiated cells (CM) was transferred to naïve, cells. T24 or SV-HUC cells in the shielded half of irradiated flasks had increased numbers of DNA damage foci vs non-irradiated cells. A physical barrier blocked this response, indicating release of transmitters from irradiated cells. Clonogenic survival of shielded T24 or SV-HUC was also reduced; a physical barrier prevented this phenomenon. CM-transfer increased pro-apoptotic caspase-3 activity, increased cleaved caspase-3 and cleaved PARP expression and reduced survival protein XIAP expression. This effect was mimicked by ATP. ATP or CM evoked suramin-sensitive Ca2+-signals. Irradiation increased [ATP] in CM from T24. The CM-inhibitory effect on T24 clonogenic survival was blocked by apyrase, or mimicked by ATP. We conclude that radiation-induced bystander signaling enhances urothelial cancer cell killing via activation of purinergic pro-apoptotic pathways. This benefit is accompanied by normal urothelial damage indicating RT bladder toxicity is also bystander-mediated.
Collapse
Affiliation(s)
- Malgorzata A Bill
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Conor Breen
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| |
Collapse
|
14
|
Thompson HF, Butterworth KT, McMahon SJ, Ghita M, Hounsell AR, Prise KM. The Impact of Hypoxia on Out-of-Field Cell Survival after Exposure to Modulated Radiation Fields. Radiat Res 2017; 188:636-644. [PMID: 29019742 DOI: 10.1667/rr14836.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Advanced radiotherapy techniques such as intensity modulated radiation therapy achieve highly conformal dose distributions within target tumor volumes through the sequential delivery of multiple spatially and temporally modulated radiation fields and have been shown to influence radiobiological response. The goals of this study were to determine the effect of hypoxia on the cell survival responses of different cell models (H460, DU145, A549, MDA231 and FADU) to modulated fields and to characterize the time dependency of signaling under oxic conditions, following reoxygenation and after prolonged hypoxia. Hypoxia was induced by incubating cells at 95% nitrogen and 5% carbon dioxide for 4 h prior to irradiation. The out-of-field response in MDA231 cells was oxygen dependent and therefore selected for co-culture studies to determine the signaling kinetics at different time intervals after irradiation under oxic and hypoxic conditions. Under both oxic and hypoxic conditions, significant increases in cell survival were observed in-field with significant decreases in survival observed out-of-field (P < 0.05), which were dependent on intercellular communication. The in-field response of MDA231 cells showed no significant time dependency up to 24 h postirradiation, while out-of-field survival decreased significantly during the first 6 h postirradiation (P < 0.05). While in-field responses were oxygen dependent, out-of-field effects were observed to be independent of oxygen, with similar or greater cell killing under hypoxic conditions. This study provides further understanding of intercellular signaling under hypoxic conditions and highlights the need for further refinement of established radiobiological models for future applications in advanced radiotherapies.
Collapse
Affiliation(s)
- Hannah F Thompson
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Mihaela Ghita
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Alan R Hounsell
- b Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| |
Collapse
|
15
|
Mohye El-Din AA, Abdelrazzak AB, Ahmed MT, El-Missiry MA. Radiation induced bystander effects in the spleen of cranially-irradiated rats. Br J Radiol 2017; 90:20170278. [PMID: 28937261 DOI: 10.1259/bjr.20170278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the radiation-induced abscopal effect in terms of oxidative stress, apoptosis and DNA damage in the spleen cells following cranial X-rays irradiation of rats. METHODS Rats were cranially irradiated using 2 Gy X-rays. Another group was whole-body irradiated with 2 Gy X-rays and a third group was exposed to scattered radiation (measured to be 3 mGy). 24 hours following irradiation, sections from the spleen of the rats were dissected as well as plasma samples. The samples were examined for the desired endpoints. RESULTS The cranially irradiated animals showed a significant increase in the levels of glutathione, superoxide dismutase and catalase with no significant change in the lipid peroxidation product in the spleen cells with a significant increase in the C-reactive protein level the plasma. Apoptotic cell death in the spleen cells was demonstrated as indicated by the decrease of Bcl-2; the increase of p53, Bax, caspase-3 and caspase-8 and induction of DNA damage in the spleen in both of the cranially irradiated rats and whole body exposed rats. The exposure to 3 mGy scattered radiation increased the plasma level of C-RP and also induced apoptosis in the spleen cells. CONCLUSION Cranial irradiation-induced abscopal effect in distant spleen cells. Very low doses of radiation can induce apoptosis in the spleen cells. Advances in knowledge: This paper provides an evidence on the incidence of radiation abscopal effect. Also, the results shed light of the effect very low doses of radiation as low as 3 mGy.
Collapse
Affiliation(s)
- Amal A Mohye El-Din
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | | | - Moustafa T Ahmed
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | - Mohamed A El-Missiry
- 3 Department of Zoology, Faculty of Science, Mansoura University , Mansoura , Egypt
| |
Collapse
|
16
|
Hanu C, Wong R, Sur RK, Hayward JE, Seymour C, Mothersill C. Low-dose non-targeted radiation effects in human esophageal adenocarcinoma cell lines. Int J Radiat Biol 2016; 93:165-173. [PMID: 27653785 DOI: 10.1080/09553002.2017.1237057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate non-targeted radiation effects in esophageal adenocarcinoma cell lines (OE19 and OE33) using human keratinocyte and colorectal cancer cell reporters following γ-ray exposure. MATERIALS AND METHODS Both clonogenic assays and ratiometric calcium endpoints were used to check for the occurrence of bystander signals in reporter cells. RESULTS We report data suggesting that γ-irradiation increases cell killing over the expected linear quadratic (LQ) model levels in the OE19 cell line exposed to doses below 1 Gy, i.e. which may be suggestive to be a low hyper-radiosensitive (HRS) response to direct irradiation. Both EAC cell lines (OE19 and OE33) have the ability to produce bystander signals when irradiated cell conditioned medium (ICCM) is placed onto human keratinocyte reporters, but do not seem to be capable of responding to bystander signals when placed on their autologous reporters. Further work with human keratinocyte reporter models showed statistically significant intracellular calcium fluxes following exposure of the reporters to ICCM harvested from both EAC cell lines exposed to 0.5 Gy. CONCLUSION These experiments suggest that the OE19 and OE33 cell lines produce bystander signals in human keratinocyte reporter cells. However, the radiosensitivity of the EAC cell lines used in this study cannot be enhanced by the bystander response since both cell lines could not respond to bystander signals.
Collapse
Affiliation(s)
- Christine Hanu
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| | - Raimond Wong
- b Department of Oncology and McMaster University , Hamilton , ON , Canada
| | - Ranjan K Sur
- b Department of Oncology and McMaster University , Hamilton , ON , Canada
| | - Joseph E Hayward
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada.,c Department of Radiology , McMaster University , Hamilton , ON , Canada
| | - Colin Seymour
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| | - Carmel Mothersill
- a Medical Physics & Applied Radiation Sciences , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
17
|
Hanu C, Timotin E, Wong R, Sur RK, Hayward JE, Seymour CB, Mothersill CE. The influence of smoking on radiation-induced bystander signal production in esophageal cancer patients. ENVIRONMENTAL RESEARCH 2016; 147:565-571. [PMID: 26750714 DOI: 10.1016/j.envres.2015.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
The relevance of radiation-induced bystander effects in humans is unclear. Much of the existing data relate to cell lines but the effect of bystander signals in complex human tissues is unclear. A phase II clinical study was untaken, where blood sera from 60 patients along with 15 cancer-free volunteers were used to detect whether measurable bystander factor(s) could be found in the blood following high dose rate (HDR) brachytherapy. Overall, there was no significant change in bystander signal production (measured in a human keratinocyte reporter system) before and after one treatment fraction of HDR brachytherapy (p>0.05). Further assessment of patient characteristics and environmental modifiable factors including smoking were also analyzed. Similar to previously published data, samples taken from smokers produced weaker signals compared to non-smokers (p<0.05). Although the number of non-smoking subjects was low, there was a clear decrease in cloning efficiency observed in keratinocyte cultures for these patients that requires further study. This study found that samples taken from smokers do not produce bystander signals, whereas samples taken from non-smokers can produce such signals following HDR brachytherapy. These findings highlight the importance of studying the interactions of multiple stressors including environmental modifiers with radiation, since some factors such as smoking may elicit protection in tumor cells which could counteract the effectiveness of radiation therapy.
Collapse
Affiliation(s)
- C Hanu
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada.
| | - E Timotin
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - R Wong
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - R K Sur
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - J E Hayward
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada; Department of Radiology, McMaster University, Hamilton, ON, Canada
| | - C B Seymour
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - C E Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Fernandez-Palomo C, Seymour C, Mothersill C. Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line. Radiat Res 2016; 185:124-33. [PMID: 26849405 DOI: 10.1667/rr14208.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the past several years, investigations in both low-dose hyper-radiosensitivity and increased radioresistance have been a focus of radiation oncology and biology research, since both conditions occur primarily in tumor cell lines. There has been significant progress in elucidating their signaling pathways, however uncertainties exist when they are studied together with radiation-induced bystander effects. Therefore, the aim of this work was to further investigate this relationship using the T98G glioma and HaCaT cell lines. T98G glioma cells have demonstrated a strong transition from hyper-radiosensitivity to induced radioresistance, and HaCaT cells do not show low-dose hypersensitivity. Both cell lines were paired using a mix-and-match protocol, which involved growing nonirradiated cells in culture media from irradiated cells and covering all possible combinations between them. The end points analyzed were clonogenic cell survival and live calcium measurements through the cellular membrane. Our data demonstrated that T98G cells produced bystander signals that decreased the survival of both reporter T98G and HaCaT cells. The bystander effect occurred only when T98G cells were exposed to doses below 1 Gy, which was corroborated by the induction of calcium fluxes. However, when bystander signals originated from HaCaT cells, the survival fraction increased in reporter T98G cells while it decreased in HaCaT cells. Moreover, the corresponding calcium data showed no calcium fluxes in T98G cells, while HaCaT cells displayed a biphasic calcium profile. In conclusion, our findings indicate a possible link between low-dose hyper-radiosensitivity and bystander effects. This relationship varies depending on which cell line functions as the source of bystander signals. This further suggests that the bystander mechanisms are more complex than previously expected and caution should be taken when extrapolating bystander results across all cell lines and all radiation doses.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| |
Collapse
|
19
|
Furlong H, Smith R, Wang J, Seymour C, Mothersill C, Howe O. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin. Dose Response 2015; 13:1559325815597669. [PMID: 26673684 PMCID: PMC4674182 DOI: 10.1177/1559325815597669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss). This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT) grown in low-dose irradiated tissue-conditioned media (ITCM) from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy) of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D) gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals.
Collapse
Affiliation(s)
- Hayley Furlong
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Richard Smith
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Jiaxi Wang
- Queen’s Mass Spectrometry and Proteomics Unit, Department of Chemistry, Queen’s University, Bader Lane, Kingston, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Orla Howe
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
20
|
Fernandez-Palomo C, Bräuer-Krisch E, Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E, Mothersill C. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys Med 2015; 31:584-95. [PMID: 25817634 DOI: 10.1016/j.ejmp.2015.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Elke Bräuer-Krisch
- European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France
| | - Jean Laissue
- University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Dusan Vukmirovic
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Elisabeth Schültke
- Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
21
|
Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett 2014; 356:43-51. [PMID: 24530228 DOI: 10.1016/j.canlet.2014.01.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/08/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.
Collapse
Affiliation(s)
- Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research Demokritos, Athens, Greece
| | - Alexandros Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, M13 9WL, UK.
| |
Collapse
|
22
|
Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells. Int J Mol Sci 2014; 15:588-604. [PMID: 24398983 PMCID: PMC3907827 DOI: 10.3390/ijms15010588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/25/2013] [Accepted: 12/26/2013] [Indexed: 12/26/2022] Open
Abstract
There is a great deal of uncertainty on how low (≤0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.
Collapse
|
23
|
Mothersill C, Fernandez-Palomo C, Fazzari J, Smith R, Schültke E, Bräuer-Krisch E, Laissue J, Schroll C, Seymour C. Transmission of signals from rats receiving high doses of microbeam radiation to cage mates: an inter-mammal bystander effect. Dose Response 2014; 12:72-92. [PMID: 24659934 PMCID: PMC3960955 DOI: 10.2203/dose-response.13-011.mothersill] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inter-animal signaling from irradiated to non-irradiated organisms has been demonstrated for whole body irradiated mice and also for fish. The aim of the current study was to look at radiotherapy style limited exposure to part of the body using doses relevant in preclinical therapy. High dose homogenous field irradiation and the use of irradiation in the microbeam radiation therapy mode at the European Synchrotron Radiation Facility (ESRF) at Grenoble was tested by giving high doses to the right brain hemisphere of the rat. The right and left cerebral hemispheres and the urinary bladder were later removed to determine whether abscopal effects could be produced in the animals and also whether effects occurred in cage mates housed with them. The results show strong bystander signal production in the contra-lateral brain hemisphere and weaker effects in the distant bladder of the irradiated rats. Signal strength was similar or greater in each tissue in the cage mates housed for 48hrs with the irradiated rats. Our results support the hypothesis that proximity to an irradiated animal induces signalling changes in an unirradiated partner. If similar signaling occurs between humans, the results could have implications for caregivers and hospital staff treating radiotherapy patients.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Cristian Fernandez-Palomo
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Fazzari
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Richard Smith
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Switzerland
| | - Christian Schroll
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Mothersill C, Seymour C. Uncomfortable issues in radiation protection posed by low-dose radiobiology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:293-298. [PMID: 23673925 DOI: 10.1007/s00411-013-0472-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
This paper aims to stimulate discussion about the relevance for radiation protection of recent findings in low-dose radiobiology. Issues are raised which suggest that low-dose effects are much more complex than has been previously assumed. These include genomic instability, bystander effects, multiple stressor exposures and chronic exposures. To date, these have been accepted as being relevant issues, but there is no clear way to integrate knowledge about these effects into the existing radiation protection framework. A further issue which might actually lead to some fruitful approaches for human radiation protection is the need to develop a new framework for protecting non-human biota. The brainstorming that is being applied to develop effective and practical ways to protect ecosystems widens the debate from the narrow focus of human protection which is currently about protecting humans from radiation-induced cancers.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
25
|
Mothersill C, Smith R, Henry M, Seymour C, Wong R. Alternative medicine techniques have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects. Dose Response 2013; 11:82-98. [PMID: 23550268 DOI: 10.2203/dose-response.11-048.mothersill] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Many so-called "alternative medicine" techniques such as Reiki and acupuncture produce very good outcomes for intractable pain and other chronic illnesses but the efficacy is often dismissed as being psychosomatic. However a plausible mechanism does exist i.e. that the treatments alter the electromagnetic fields in living organisms and thereby prevent or reduce activity of neurons which lead to the pain. Low doses of ionising radiation have similar effects on electromagnetic fields and are known to induce signaling cascades in tissues due to ion gradients. To test this hypothesis cell cultures were exposed to Reiki - like and to acupuncture - like treatments, both performed by qualified practitioners. The cells were exposed either before or after the treatment to x-rays and were monitored for production of direct damage or bystander signals. The data suggest that the alternative techniques altered the response of cells to direct irradiation and altered bystander signal mechanisms. We conclude that alternative medicine techniques involving electromagnetic perturbations may modify the response of cells to ionizing radiation. In addition to the obvious implications for mechanistic studies of low dose effects, this could provide a novel target to exploit in radiation protection and in optimizing therapeutic gain during radiotherapy.
Collapse
Affiliation(s)
- Carmel Mothersill
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
26
|
Irons SL, Serra V, Bowler D, Chapman K, Militi S, Lyng F, Kadhim M. The effect of genetic background and dose on non-targeted effects of radiation. Int J Radiat Biol 2012; 88:735-42. [DOI: 10.3109/09553002.2012.715793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Mothersill C, Seymour C. Are epigenetic mechanisms involved in radiation-induced bystander effects? Front Genet 2012; 3:74. [PMID: 22629281 PMCID: PMC3354559 DOI: 10.3389/fgene.2012.00074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
The “non-targeted effects” of ionizing radiation including bystander effects and genomic instability are unique in that no classic mutagenic event occurs in the cell showing the effect. In the case of bystander effects, cells which were not in the field affected by the radiation show high levels of mutations, chromosome aberrations, and membrane signaling changes leading to what is termed “horizontal transmission” of mutations and information which may be damaging while in the case of genomic instability, generations of cells derived from an irradiated progenitor appear normal but then lethal and non-lethal mutations appear in distant progeny. This is known as “vertical transmission.” In both situations high yields of non-clonal mutations leading to distant occurrence of mutation events both in space and time. This precludes a mutator phenotype or other conventional explanation and appears to indicate a generalized form of stress-induced mutagenesis which is well documented in bacteria. This review will discuss the phenomenology of what we term “non-targeted effects,” and will consider to what extent they challenge conventional ideas in genetics and epigenetics.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
28
|
MotherSill C, Seymour C. Changing paradigms in radiobiology. Mutat Res 2012; 750:85-95. [PMID: 22273762 DOI: 10.1016/j.mrrev.2011.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
The last 25 years have seen a major shift in emphasis in the field of radiobiology from a DNA-centric view of how radiation damage occurs to a much more biological view that appreciates the importance of macro-and micro-environments, hierarchical organization, underlying genetics, evolution, adaptation and signaling at all levels from atoms to ecosystems. The new view incorporates concepts of hormesis, nonlinear systems, bioenergy field theory, uncertainty and homeodynamics. While the mechanisms underlying these effects and responses are still far from clear, it is very apparent that their implications are much wider than the field of radiobiology. This reflection discusses the changing views and considers how they are influencing thought in environmental and medical science and systems biology.
Collapse
Affiliation(s)
- Carmel MotherSill
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Colin Seymour
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
29
|
Mothersill C, Bristow RG, Harding SM, Smith RW, Mersov A, Seymour CB. A role for p53 in the response of bystander cells to receipt of medium borne signals from irradiated cells. Int J Radiat Biol 2011; 87:1120-5. [DOI: 10.3109/09553002.2011.610866] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Blyth BJ, Sykes PJ. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 2011; 176:139-57. [PMID: 21631286 DOI: 10.1667/rr2548.1] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The term radiation-induced bystander effect is used to describe radiation-induced biological changes that manifest in unirradiated cells remaining within an irradiated cell population. Despite their failure to fit into the framework of classical radiobiology, radiation-induced bystander effects have entered the mainstream and have become established in the radiobiology vocabulary as a bona fide radiation response. However, there is still no consensus on a precise definition of radiation-induced bystander effects, which currently encompasses a number of distinct signal-mediated effects. These effects are classified here into three classes: bystander effects, abscopal effects and cohort effects. In this review, the data have been evaluated to define, where possible, various features specific to radiation-induced bystander effects, including their timing, range, potency and dependence on dose, dose rate, radiation quality and cell type. The weight of evidence supporting these defining features is discussed in the context of bystander experimental systems that closely replicate realistic human exposure scenarios. Whether the manifestation of bystander effects in vivo is intrinsically limited to particular radiation exposure scenarios is considered. The conditions under which radiation-induced bystander effects are induced in vivo will ultimately determine their impact on radiation-induced carcinogenic risk.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
31
|
Zyuzikov NA, Coates PJ, Parry JM, Lorimore SA, Wright EG. Lack of Nontargeted Effects in Murine Bone Marrow after Low-DoseIn VivoX Irradiation. Radiat Res 2011; 175:322-7. [DOI: 10.1667/rr2386.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Proteomic changes in the gills of wild-type and transgenic radiosensitive medaka following exposure to direct irradiation and to X-ray induced bystander signals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:290-8. [DOI: 10.1016/j.bbapap.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023]
|
33
|
A percolation-like model for simulating inter-cellular diffusion in the context of bystander signalling in tumour. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 34:31-9. [DOI: 10.1007/s13246-010-0048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
34
|
Gow MD, Seymour CB, Ryan LA, Mothersill CE. Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 2010; 173:769-78. [PMID: 20518656 DOI: 10.1667/rr1895.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined bystander cell death produced in T98G cells by exposure to irradiated cell conditioned medium (ICCM) produced by high-energy 20 MeV electrons at a dose rate of 10 Gy min(-1) and doses up to 20 Gy. ICCM induced a bystander response in T98G glioma cells, reducing recipient cell survival by more than 25% below controls at 5 and 10 Gy. Higher doses increased survival to near control levels. ICCM was analyzed for the presence of transforming growth factor alpha (TGF-alpha) and transforming growth factor beta1 (TGF-beta1). Monoclonal antibodies for TGF-alpha (mAb TGF-alpha) and TGF-beta1 (mAb TGF-beta1) were added to the ICCM to neutralize any potential effect of the cytokines. The results indicate that TGF-alpha was not present in the ICCM and addition of mAb TGF-alpha to the ICCM had no effect on bystander cell survival. No active TGF-beta1 was present in the ICCM; however, addition of mAb TGF-beta1 completely abolished bystander death of reporter cells at all doses. These results indicate that bystander cell death can be induced in T98G glioma if a large enough radiation stress is applied and that TGF-beta1 plays a downstream role in this response.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
35
|
Liu SZ. Biological effects of low level exposures to ionizing radiation: theory and practice. Hum Exp Toxicol 2010; 29:275-81. [PMID: 20332172 DOI: 10.1177/0960327109363967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper briefly reviewed recent reports on the epidemiological and experimental data on low dose radiation effects that support the concept of radiation hormesis. These reports point to the possibility of existence of a threshold dose in cancer induction by ionizing radiation and in some cases the occurrence of hormetic effects with stimulation of host defense mechanisms. The possibility of the use of low dose radiation in cancer treatment to improve the outcome of conventional radiotherapy was raised by citing previous reports on experimental studies, which showed increased efficacy in tumor control with significant reduction of total dose of radiation when low dose radiation was used in the combined treatment protocol.
Collapse
Affiliation(s)
- Shu-Zheng Liu
- Department of Radiation Biology, Jilin University School of Public Health, Changchun, China.
| |
Collapse
|
36
|
Singh H, Saroya R, Smith R, Mantha R, Guindon L, Mitchel REJ, Seymour C, Mothersill C. Radiation induced bystander effects in mice given low doses of radiation in vivo. Dose Response 2010; 9:225-42. [PMID: 21731538 DOI: 10.2203/dose-response.09-062.singh] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 'bystander effect' phenomenon has challenged the traditional framework for assessing radiation damage by showing radiation induced changes in cells which have not been directly targeted, but are neighbors to or receive medium from directly hit cells. Our group performed a range of single and serial low dose irradiations on two genetically distinct strains of mice. Bladder explants established from these mice were incubated in culture medium, which was used to measure death responses in a keratinocyte reporter system. The study revealed that the medium harvested from bladder tissues' (ITCM) from acutely irradiated C57BL6 but not Balb/c mice, was able to induce clonogenic death. Administration of a priming dose(s) before a challenge dose to both C57BL6 and Balb/c mice stimulated reporter cell survival irrespective of the time interval between dose(s) delivery. When ITCM corresponding to both strains of mice was measured for its calcium mobilization inducing ability, results showed an elevation in intracellular calcium levels that was strain dependent. This indicates that genotype determined the type of bystander signal/response that was produced after exposure to low and acute doses of radiation. However, serial exposure conditions modified bystander signal production to induce similar effects that were characterized by excessive growth.
Collapse
Affiliation(s)
- Harleen Singh
- Medical Physics and Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Blyth BJ, Azzam EI, Howell RW, Ormsby RJ, Staudacher AH, Sykes PJ. An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo. Radiat Res 2010; 173:125-37. [PMID: 20095844 DOI: 10.1667/rr1899.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The potential for irradiated cells to induce biological effects in their unirradiated neighbors (known as the bystander effect) has been observed repeatedly in vitro. However, whether bystander effects occur in vivo under the specific conditions relevant to low-dose radiation protection is still unclear. To test this, the fate of bystander cells in the mouse spleen was examined using an adoptive transfer method designed to replicate the rare, irradiated cells in an organ that might be expected after a low-dose-rate, low-LET radiation exposure. Splenic lymphocytes radiolabeled with low activities of (3)H-thymidine were introduced into the spleens of unirradiated recipient mice. In this study, the apoptotic and proliferative response of the neighboring bystander spleen cells was compared to the response of spleen cells in parallel control recipients that received sham-irradiated cells. Neither the local area surrounding lodged radiolabeled cells nor the spleen as a whole showed a change in apoptosis or proliferation either 1 or 3 days after adoptive transfer. Increasing the irradiated cell numbers, increasing the mean (3)H-thymidine activity per cell, or exposing cells ex vivo to an acute X-ray dose also had no effect. Possible reasons for the absence of a bystander effect in the spleen under these conditions are discussed.
Collapse
Affiliation(s)
- Benjamin J Blyth
- a Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Frankenberg D, Greif KD, Giesen U. Radiation response of primary human skin fibroblasts and their bystander cells after exposure to counted particles at low and high LET. Int J Radiat Biol 2009; 82:59-67. [PMID: 16546904 DOI: 10.1080/09553000600582979] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the dependence of bystander effects on linear energy transfer (LET) in the low dose region. MATERIALS AND METHODS The single-ion microbeam of the Physikalisch-Technische Bundesanstalt (PTB) was used to irradiate confluent primary human skin fibroblasts. Cells plated on a special irradiation dish were targeted with 10 MeV protons (LET 4.7 keV/microm) and 4.5 MeV a-particles (LET 100 keV/microm). During exposure, the cells were confluent allowing signal transfers through both gap junctions and diffusion. RESULTS For 10 MeV protons the clonogenic capability was significantly higher after exposure to 70 protons (0.31 Gy) compared with unirradiated cells. For higher doses the survival curve was exponential. Exposure of only 10% of all nuclei resulted in a similar radiation response in the low dose region. For higher doses up to 2.2 Gy no cell killing was observed. For 4.5 MeV alpha-particles an exponential survival curve was obtained. Irradiation of only 10% of all cell nuclei resulted in an survival curve as had been expected in the absence of any bystander effect. CONCLUSION The type and extent of bystander effects turned out to be dependent on the particles' LET and are likely to depend also on the cell line used and the techniques applied.
Collapse
|
39
|
Abstract
Our understanding of how radiation kills normal and tumour cells has been based on an intimate knowledge of the direct induction of DNA damage and its cellular consequences. What has become clear is that, as well as responses to direct DNA damage, cell-cell signalling -- known as the bystander effect -- mediated through gap junctions and inflammatory responses may have an important role in the response of cells and tissues to radiation exposure and also chemotherapy agents. This Review outlines the key aspects of radiation-induced intercellular signalling and assesses its relevance for existing and future radiation-based therapies.
Collapse
Affiliation(s)
- Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
40
|
Mothersill C, Smith RW, Hinton TG, Aizawa K, Seymour CB. Communication of radiation-induced signals in vivo between DNA repair deficient and proficient medaka (Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3335-3342. [PMID: 19534155 DOI: 10.1021/es8035219] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Radiation-induced bystander effects are established consequences of exposure to ionizing radiation. The operation of this mechanism has been seen in vitro and also between fish, mammals, and plants in vive where stress signals from treated organisms induce responses in neighbors. In vitro research shows that DNA repair deficient cells produce more toxic bystander responses. To test this in vivo two strains of Japanese medaka were tested. One is a mutant, repair deficient strain (ric2) and the other, the wildtype repair proficient strain (CAB). Irradiated fish swam with unirradiated partners in a strain mix and match protocol. The data suggest that medaka produce signals, when exposed to radiation, that induce unirradiated fish ofthe same strain swimming with them to produce an altered response to that seen in bystanders to sham irradiated fish. More apoptosis was seen in bystanders to repair deficient fish. When the strains are mixed, the bystanders of either strain respond like the donor strain. Measurements of Bcl-2 and cmyc proteins in the explants confirmed these observations. A possible role for p53 was also identified in that the use of reporters with mutant p53 demonstrated that CAB signals killed all the reporter cells by apoptosis. Use of a similar but p53 wildtype cell line had no such effect. The data add to the body of knowledge showing that bystander signals operate at hierarchical levels of organization greater than the individual and may therefore have relevance in radioecology and (eco)systems biology.
Collapse
Affiliation(s)
- C Mothersill
- McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | |
Collapse
|
41
|
Vines AM, Lyng FM, McClean B, Seymour C, Mothersill CE. Bystander effect induced changes in apoptosis related proteins and terminal differentiation in in vitro murine bladder cultures. Int J Radiat Biol 2009; 85:48-56. [PMID: 19205984 DOI: 10.1080/09553000802635047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Radiation-induced bystander effects are now an established phenomenon seen in numerous cell and tissue culture models. The aim of this investigation was to examine the bystander signal and response in a multicellular primary tissue culture system in vitro. METHODS AND MATERIALS Murine bladder samples were explanted and directly exposed to gamma radiation, or treated with irradiated tissue conditioned medium (ITCM) generated from the directly irradiated cultures. RESULTS Results indicated that there was a strong bystander signal produced by the tissue that caused both dose-dependent and -independent changes in the ITCM treated tissue. Significantly increased B-cell lymphoma 2 (Bcl2) expression was noted after treatment with 0.5Gy and 5Gy ITCM (approximately 80%), while dose-dependent changes were observed in c-myelocytomatosis (cMyc) (39.48% at 0.5 Gy ITCM, 81.28% at 5 Gy ITCM) and the terminal differentiation marker uroplakin III (17.88% at 0.5 Gy). Nuclear fragmentation was also significantly increased at both doses of ITCM. CONCLUSION These data suggest that the bystander signal produced in a multicellular environment induces complex changes in the ITCM-treated culture, and that these changes are reflective of a coordinated response to maintain integrity throughout the tissue.
Collapse
Affiliation(s)
- A M Vines
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin.
| | | | | | | | | |
Collapse
|
42
|
Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, Kovalchuk O. Radiation-induced bystander effects in vivo are sex specific. Mutat Res 2008; 642:28-36. [PMID: 18508093 DOI: 10.1016/j.mrfmmm.2008.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/24/2008] [Accepted: 04/01/2008] [Indexed: 05/26/2023]
Abstract
Ionizing radiation (IR) effects span beyond the area of direct exposure and can be observed in neighboring and distant naïve cells and organs. This phenomenon is termed a 'bystander effect'. IR effects in directly exposed tissue in vivo are epigenetically mediated and distinct in males and females. Yet, IR-induced bystander effects have never been explored in a sex-specificity domain. We used an in vivo mouse model, whereby the bystander effects are studied in spleen of male and female animals subjected to head exposure when the rest of the body is protected by a medical-grade lead shield. We analyzed the induction of DNA damage and alterations in global DNA methylation. Molecular parameters were correlated with cellular proliferation and apoptosis levels. The changes observed in bystander organs are compared to the changes in unexposed animals and animals exposed to predicted and measured scatter doses. We have found the selective induction of DNA damage levels, global DNA methylation, cell proliferation and apoptosis in exposed and bystander spleen tissue of male and female mice. Sex differences were significantly diminished in animals subjected to a surgical removal of gonads. These data constitute the first evidence of sex differences in radiation-induced bystander effects in mouse spleen in vivo. We show the role of sex hormones in spleen bystander responses and discuss implications of the observed changes.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Salbu B, Denbeigh J, Smith RW, Heier LS, Teien HC, Rosseland BO, Oughton D, Seymour CB, Mothersill C. Environmentally relevant mixed exposures to radiation and heavy metals induce measurable stress responses in Atlantic salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:3441-3446. [PMID: 18522131 DOI: 10.1021/es7027394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
These experiments were designed to identify stress effects in 3 key organs in Atlantic Salmon (Salmo salar, L.) after exposure in vivo to very low doses of radiation, and subtoxic levels of aluminum (Al) and cadmium (Cd) alone or in combination. Six fish per group were sacrificed after exposure and the anterior kidney, fin, and gill were dissected and sentfor assay of bystander signal production as a stress response end point. Radiation doses as low as 4 mGy delivered over 5 h, alone or in combination with Cd and/or Al, caused bystander signals to be produced in tissues harvested from in vivo exposed salmon. The effects vary among different organs and are not consistently additive or synergistic for a given treatment although gill cells do show high degrees of synergism between radiation and metal exposure. Data for individual fish did not suggest any systemic sensitivity to the stressors. Interestingly, the data for Cd suggest that lower toxicity is found when the metal is used in combination with radiation exposure. Expression of two proteins associated with survival responses (Bcl-2) or death responses (cmyc) after radiation was measured in the tissue cultures and showed a highly significant correlation with response outcome. The results, although complex, indicate that these stress signal responses may aid in the mechanistic investigation of mixed contaminant effects in fish exposed to metals and radiation.
Collapse
Affiliation(s)
- B Salbu
- Norwegian University of Life Sciences, As, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys 2008; 70:554-62. [PMID: 18207032 DOI: 10.1016/j.ijrobp.2007.09.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/28/2007] [Accepted: 09/27/2007] [Indexed: 11/20/2022]
Abstract
PURPOSE It is well accepted that irradiated cells may "forward" genome instability to nonirradiated neighboring cells, giving rise to the "bystander effect" phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. METHODS AND MATERIALS We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. RESULTS We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. CONCLUSION Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis.
Collapse
|
45
|
Gow MD, Seymour CB, Byun SH, Mothersill CE. Effect of dose rate on the radiation-induced bystander response. Phys Med Biol 2007; 53:119-32. [PMID: 18182691 DOI: 10.1088/0031-9155/53/1/008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radiation-induced biological bystander effects have become a well-established phenomenon associated with the interaction of radiation with cells. These so-called bystander effects have been seen across a variety of end points for both high and low linear energy transfer (LET) radiations, utilizing a variety of dose rates and radiation sources. In this study, the effect of dose rate and different low LET sources on the bystander cell survival fraction (SF) was examined. The cell line investigated was the human keratinocyte HPV-G. The bystander response was measured via clonogenic assay after medium transfer protocol. Cells were irradiated using (60)Co gamma-rays and 20 MeV electrons at doses of 0.5, 5 and 10 Gy with varying dose rates. Both gamma and electron irradiation decreased recipient SF at 0.5 Gy and 5 Gy, respectively. Subsequent recovery of the SF to control levels for 10 Gy was observed. There was no dose rate dependence for (60)Co irradiation. A significant difference in the survival fraction was observed for electron irradiation at 10 Gy and a high dose rate. Furthermore, survival fractions were compared between (60)Co and 20 MeV electron irradiations. This showed a significant increase in the survival fraction 'recovery' at 10 Gy for a (60)Co dose rate of 1.1 Gy min(-1) compared to 20 MeV electrons at 1.0 Gy min(-1). No such difference was observed when comparing at higher dose rates. Lastly, increases in survival fraction at 10 Gy were abolished and the SF decreased by the plating of increased numbers of recipient cells. Such evidence may help gain insight into the nature and mechanism(s) surrounding bystander signal production, how these phenomena are tested and their eventual application in a clinical setting.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, On L8S 4K1, Canada.
| | | | | | | |
Collapse
|
46
|
Poon RCC, Agnihotri N, Seymour C, Mothersill C. Bystander effects of ionizing radiation can be modulated by signaling amines. ENVIRONMENTAL RESEARCH 2007; 105:200-11. [PMID: 17291485 DOI: 10.1016/j.envres.2006.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/07/2006] [Accepted: 12/18/2006] [Indexed: 05/13/2023]
Abstract
Actual risk and risk management of exposure to ionizing radiation are among the most controversial areas in environmental health protection. Recent developments in radiobiology especially characterization of bystander effects have called into question established dogmas and are thought to cast doubt on the scientific basis of the risk assessment framework, leading to uncertainty for regulators and concern among affected populations. In this paper we test the hypothesis that small signaling molecules widely used throughout the animal kingdom for signaling stress or environmental change, such as 5-Hydroxytryptamine (5-HT, serotonin), l-DOPA, glycine or nicotine are involved in bystander signaling processes following ionizing radiation exposure. We report data which suggest that nano to micromolar concentrations of these agents can modulate bystander-induced cell death. Depletion of 5-HT present in tissue culture medium, occurred following irradiation of cells. This suggested that 5-HT might be bound by membrane receptors after irradiation. Expression of 5-HT type 3 receptors which are Ca(2+) ion channels was confirmed in the cells using immunocytochemistry and receptor expression could be increased using radiation or 5-HT exposure. Zofran and Kitryl, inhibitors of 5-HT type 3 receptors, and reserpine a generic serotonin antagonist block the bystander effect induced by radiation or by serotonin. The results may be important for the mechanistic understanding of how low doses of radiation interact with cells to produce biological effects.
Collapse
Affiliation(s)
- R C C Poon
- Department of Medical Physics and Applied Radiation Sciences, Juravinski Cancer Centre, McMaster University, Hamilton, Ont., Canada
| | | | | | | |
Collapse
|
47
|
Mothersill C, Smith RW, Agnihotri N, Seymour CB. Characterization of a radiation-induced stress response communicated in vivo between zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3382-7. [PMID: 17539553 DOI: 10.1021/es062978n] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Radiation-induced communication of stress signals between rainbow trout (Oncorhynchus mykiss W) have recently been described by this group and linked to the bystander effect. This paper addresses the question of whether another totally unrelated fish species (Danio rerio L) can demonstrate the effect and also looks at attenuation of both the bystander signal, from irradiated fish, and the bystander effect, in naive fish. The data show that zebrafish produce bystander signals, and that, as with rainbow trout these can affect naïve (i.e., non-irradiated) fish placed in water with X-rayed fish or in water previously occupied by X-rayed fish. Skin explants from directly X-rayed fish still reduce HPV-G reporter cell growth 6 h after X-ray, but the bystander signal to naïve fish is lost. Twelve h after X-ray the signal is lost in X-rayed fish. The bystander effect is also attenuated if induction was by placing naïve fish in water which previously held the X-rayed fish. However, the effect is retained if induction was by placing X-rayed and naïve fish together. This suggests the signal is not retained by water for long periods of time. Individual fish data reveal unique responses by bystander fish which could indicate varying levels of sensitivity to signal strength among individuals.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | | | | | | |
Collapse
|
48
|
Mothersill C, Moran G, McNeill F, Gow MD, Denbeigh J, Prestwich W, Seymour CB. A role for bioelectric effects in the induction of bystander signals by ionizing radiation? Dose Response 2007; 5:214-29. [PMID: 18648606 DOI: 10.2203/dose-response.06-011.mothersill] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The induction of "bystander effects" i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy (60)Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10 min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure.
Collapse
Affiliation(s)
- C Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 660 Concession St., Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Marozik P, Mothersill C, Seymour CB, Mosse I, Melnov S. Bystander effects induced by serum from survivors of the Chernobyl accident. Exp Hematol 2007; 35:55-63. [PMID: 17379088 DOI: 10.1016/j.exphem.2007.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine blood samples from survivors of the Chernobyl accident for evidence of persistent bystander factors or clastogenic factors and to look at the ability of melanin and melatonin, which are radioprotective agents capable of preventing bystander effects in cell culture to prevent toxic effects. MATERIALS AND METHODS Serum was extracted from blood samples of control and test groups and added to human immortalized reporter cells, used in our laboratories for identification of bystander effects. These were then analyzed for evidence of micronucleus formation and viability. RESULTS Micronuclei were significantly elevated in cells exposed to serum samples from Chernobyl liquidators and from workers in Gomel. Viability of cells treated with these sera was correspondingly reduced. CONCLUSION Twenty years after the accident at the Chernobyl Plant, these is still evidence of the presence of clastogenic or bystander factors in the serum of populations exposed to radiation from the reactor.
Collapse
|
50
|
Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, Pogribny IP, Kovalchuk O. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 2007; 28:1831-8. [PMID: 17347136 DOI: 10.1093/carcin/bgm053] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radiation therapy is a primary treatment modality for brain tumors, yet it has been linked to the increased incidence of secondary, post-radiation therapy cancers. These cancers are thought to be linked to indirect radiation-induced bystander effect. Bystander effect occurs when irradiated cells communicate damage to nearby, non-irradiated 'bystander' cells, ultimately contributing to genome destabilization in the non-exposed cells. Recent evidence suggests that bystander effect may be epigenetic in nature; however, characterization of epigenetic mechanisms involved in bystander effect generation and its long-term persistence has yet to be defined. To investigate the possibility that localized X-ray irradiation induces persistent bystander effects in distant tissue, we monitored the induction of epigenetic changes (i.e. alterations in DNA methylation, histone methylation and microRNA (miRNA) expression) in the rat spleen tissue 24 h and 7 months after localized cranial exposure to 20 Gy of X-rays. We found that localized cranial radiation exposure led to the induction of bystander effect in lead-shielded, distant spleen tissue. Specifically, this exposure caused the profound epigenetic dysregulation in the bystander spleen tissue that manifested as a significant loss of global DNA methylation, alterations in methylation of long interspersed nucleotide element-1 (LINE-1) retrotransposable elements and down-regulation of DNA methyltransferases and methyl-binding protein methyl CpG binding protein 2 (MeCP2). Further, irradiation significantly altered expression of miR-194, a miRNA putatively targeting both DNA methyltransferase-3a and MeCP2. This study is the first to report conclusive evidence of the long-term persistence of bystander effects in radiation carcinogenesis target organ (spleen) upon localized distant exposure using the doses comparable with those used for clinical brain tumor treatments.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Biological Sciences, University of Lethbridge, Alberta, T1K 3M4, Canada
| | | | | | | | | | | | | | | |
Collapse
|