1
|
Cheron M, Brischoux F. Exposure to Low Concentrations of AMPA Influences Morphology and Decreases Survival During Larval Development in a Widespread Amphibian Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:92-103. [PMID: 37468648 DOI: 10.1007/s00244-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France.
| |
Collapse
|
2
|
Cheron M, Kato A, Ropert-Coudert Y, Meyer X, MacIntosh AJJ, Raoelison L, Brischoux F. Exposure, but not timing of exposure, to a sulfonylurea herbicide alters larval development and behaviour in an amphibian species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106355. [PMID: 36446167 DOI: 10.1016/j.aquatox.2022.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental contamination is one of the major causes of biodiversity loss. Wetlands are particularly susceptible to contamination and species inhabiting these habitats are subjected to pollutants during sensitive phases of their development. In this study, tadpoles of a widespread amphibian, the spined toad (Bufo spinosus), were exposed to environmental concentrations of nicosulfuron (0 μg/L; 0.15 ± 0.05 μg/L and 0.83 ± 0.04 μg/L), a sulfonylurea herbicide, during different phases of development. Tadpoles were exposed during embryonic (12.98 ± 0.90 days) or larval development (93.74± 0.85 days), or throughout both phases, and we quantified development duration, morphological traits and behavioural features as responses to exposure. Developing tadpoles exposed to nicosulfuron were larger, but with smaller body, and had shorter but wider tail muscles. They were also more active and swam faster than control tadpoles and showed diverging patterns of behavioural complexity. We showed that higher concentrations had greater effects on individuals than lower concentrations, but the timing of nicosulfuron exposure did not influence the metrics studied: Exposure to nicosulfuron triggered similar effects irrespective of the developmental stages at which exposure occurred. These results further indicate that transient exposure (e.g., during embryonic development) can induce long-lasting effects throughout larval development to metamorphosis. Our study confirms that contaminants at environmental concentrations can have strong consequences on non-target organisms. Our results emphasize the need for regulation agencies and policy makers to consider sublethal concentrations of sulfonulyrea herbicides, such as nicosulfuron, as a minimum threshold in their recommendations.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France.
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Yan Ropert-Coudert
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Xavier Meyer
- European Science Foundation, 1 quai Lezay-Marnesia, Strasbourg 67080, France
| | - Andrew J J MacIntosh
- Kyoto University Primate Research Institute, 41-2 Kanrin, Inuyama 484-8506, Japan
| | - Léa Raoelison
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
3
|
Bardier C, Maneyro R, Toledo LF. The Correlates of in Situ Larval Survivorship of the Threatened South American Toad Melanophryniscus montevidensis (Anura, Bufonidae). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-17-00019.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cecilia Bardier
- Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Raúl Maneyro
- Laboratorio de Sistemática e Historia Natural de Vertebrados, Instituto de Ecología y Ciencias ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083‐970, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Melvin SD. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:271-278. [PMID: 26073539 DOI: 10.1016/j.aquatox.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Effectively treating domestic wastewater is paramount for preserving the health of aquatic ecosystems. Various technologies exist for wastewater treatment, ranging from simple pond-based systems to advanced filtration, and it is important to evaluate the potential for these different options to produce water that is acceptable for discharge. Sub-lethal responses were therefore assessed in juvenile Empire Gudgeons (Hypseleotris compressa) exposed for a period of two weeks to control, 12.5, 25, 50, and 100% wastewater treated through a multi-stage constructed wetland (CW) treatment system. Effects on basic energy reserves (i.e., lipids and protein), growth and condition, and swimming performance were quantified following exposure. A significant increase in weight and condition was observed in fish exposed to 50 and 100% wastewater dilutions, whereas whole-body lipid content was significantly reduced in these treatments. Maximum swimming velocity increased in a dose-dependent manner amongst treatment groups (although not significantly), whereas angular velocity was significantly reduced in the 50 and 100% dilutions. Results demonstrate that treated domestic wastewater can influence the growth and swimming performance of fish, and that such effects may be related to alterations to primary energy stores. However, studies assessing complex wastewaters present difficulties when it comes to interpreting responses, as many possible factors can contribute towards the observed effects. Future research should address these uncertainties by exploring interaction between nutrients, basic water quality characteristics and relevant contaminant mixtures, for influencing the energetics, growth, and functional performance of aquatic animals.
Collapse
Affiliation(s)
- Steven D Melvin
- School of Medical and Applied Sciences, Building 604, CQ University, Bryan Jordan Drive, Gladstone, QLD 4702, Australia.
| |
Collapse
|
5
|
Lanctôt C, Navarro-Martín L, Robertson C, Park B, Jackman P, Pauli BD, Trudeau VL. Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: agriculturally relevant exposures to Roundup WeatherMax® and Vision® under laboratory conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:291-303. [PMID: 24912403 DOI: 10.1016/j.aquatox.2014.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Glyphosate-based herbicides are currently the most commonly used herbicides in the world. They have been shown to affect survival, growth, development and sexual differentiation of tadpoles under chronic laboratory exposures but this has not been investigated under more environmentally realistic conditions. The purpose of this study is (1) to determine if an agriculturally relevant exposure to Roundup WeatherMax®, a relatively new and understudied formulation, influences the development of wood frog tadpoles (Lithobates sylvaticus) through effects on the mRNA levels of genes involved in the control of metamorphosis; (2) to compare results to the well-studied Vision® formulation (containing the isopropylamine salt of glyphosate [IPA] and polyethoxylated tallowamine [POEA] surfactant) and to determine which ingredient(s) in the formulations are responsible for potential effects on development; and (3) to compare results to recent field studies that used a similar experimental design. In the present laboratory study, wood frog tadpoles were exposed to an agriculturally relevant application (i.e., two pulses) of Roundup WeatherMax® and Vision® herbicides as well as the active ingredient (IPA) and the POEA surfactant of Vision®. Survival, development, growth, sex ratios and mRNA levels of genes involved in tadpole metamorphosis were measured. Results show that Roundup WeatherMax® (2.89 mg acid equivalent (a.e.)/L) caused 100% mortality after the first pulse. Tadpoles treated with a lower concentration of Roundup WeatherMax® (0.21 mg a.e./L) as well as Vision® (2.89 mg a.e./L), IPA and POEA had an increased condition factor (based on length and weight measures in the tadpoles) relative to controls at Gosner stage (Gs) 36/38. At Gs42, tadpoles treated with IPA and POEA had a decreased condition factor. Also at Gs42, the effect on condition factor was dependent on the sex of tadpoles and significant treatment effects were only detected in males. In most cases, treatment reduced the normal mRNA increase of key genes controlling development in tadpoles between Gs37 and Gs42, such as genes encoding thyroid hormone receptor beta in brain, glucocorticoid receptor in tail and deiodinase enzyme in brain and tail. We conclude that glyphosate-based herbicides have the potential to alter mRNA profiles during metamorphosis. However, studies in natural systems have yet to replicate these negative effects, which highlight the need for more ecologically relevant studies for risk assessment.
Collapse
Affiliation(s)
- C Lanctôt
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - L Navarro-Martín
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - C Robertson
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - B Park
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba R3T 2N6, Canada.
| | - P Jackman
- Environment Canada, Atlantic Laboratory for Environmental Testing, Moncton , New Brunswick E1A 3E9, Canada.
| | - B D Pauli
- Environment Canada, National Wildlife Research Center, Carleton University, Ottawa, Ontario K1A 0H3, Canada.
| | - V L Trudeau
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
6
|
Melvin SD, Cameron MC, Lanctôt CM. Individual and mixture toxicity of pharmaceuticals naproxen, carbamazepine, and sulfamethoxazole to Australian striped marsh frog tadpoles (Limnodynastes peronii). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:337-45. [PMID: 24593146 DOI: 10.1080/15287394.2013.865107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nonsteroidal human pharmaceuticals are prevalent in domestic wastewater and may find their way into the environment at low concentrations. Since most pharmaceuticals are designed to be biologically active at low concentrations, there is a risk that these compounds may affect aquatic wildlife. Of particular concern is the occurrence of pharmaceutical mixtures, which may lead to increased adverse effects compared to individual compounds. Interactive effects were previously demonstrated for amphibians exposed to pesticide mixtures, but no such studies investigating responses of amphibians to pharmaceutical mixtures are apparently available. Results demonstrated increased toxicity (loss of tactile response) of striped marsh frog (Limnodynastes peronii) tadpoles exposed to a mixture of naproxen, carbamazepine, and sulfamethoxazole, compared to exposures to the individual compounds. Significant time × treatment interactions were observed for tadpole development following chronic exposures to 10 or 100 μg/L of each compound and the mixture; however, responses were weak and main treatment effects were not significant. Despite minor effects at low exposure concentrations, results demonstrated a potential for mixtures of nonsteroidal pharmaceuticals commonly occurring in wastewater to influence amphibian development. With the vast numbers of pharmaceuticals that exist and are found in the environment, this work highlights a need for further research into mixtures of pharmaceutically active wastewater contaminants. Further, since pharmaceuticals exert extremely varied biological actions, it is suggested that future investigations would benefit from inclusion of endpoints that are indicative of physiological or metabolic performance, as well as assessment of sensitive behavioral responses.
Collapse
Affiliation(s)
- Steven D Melvin
- a School of Medical and Applied Sciences , Central Queensland University , Gladstone , Queensland , Australia
| | | | | |
Collapse
|