1
|
Lourenço-de-Moraes R, Campos FS, Cabral P, Silva-Soares T, Nobrega YC, Covre AC, França FGR. Global conservation prioritization areas in three dimensions of crocodilian diversity. Sci Rep 2023; 13:2568. [PMID: 36781891 PMCID: PMC9925794 DOI: 10.1038/s41598-023-28413-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Crocodilians are a taxonomic group of large predators with important ecological and evolutionary benefits for ecosystem functioning in the face of global change. Anthropogenic actions affect negatively crocodilians' survival and more than half of the species are threatened with extinction worldwide. Here, we map and explore three dimensions of crocodilian diversity on a global scale. To highlight the ecological importance of crocodilians, we correlate the spatial distribution of species with the ecosystem services of nutrient retention in the world. We calculate the effectiveness of global protected networks in safeguarding crocodilian species and provide three prioritization models for conservation planning. Our results show the main hotspots of ecological and evolutionary values are in southern North, Central and South America, west-central Africa, northeastern India, and southeastern Asia. African species have the highest correlation to nutrient retention patterns. Twenty-five percent of the world's crocodilian species are not significantly represented in the existing protected area networks. The most alarming cases are reported in northeastern India, eastern China, and west-central Africa, which include threatened species with low or non-significant representation in the protected area networks. Our highest conservation prioritization model targets southern North America, east-central Central America, northern South America, west-central Africa, northeastern India, eastern China, southern Laos, Cambodia, and some points in southeastern Asia. Our research provides a global prioritization scheme to protect multiple dimensions of crocodilian diversity for achieving effective conservation outcomes.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Moraes
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil.
| | - Felipe S Campos
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal.
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain.
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain.
| | - Pedro Cabral
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal
| | - Thiago Silva-Soares
- Herpeto Capixaba project, Instituto Biodiversidade Neotropical, Nova Guarapari, Guarapari, ES, 29206-400, Brazil
- Museu de História Natural do Sul do Estado do Espírito Santo, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, 29550-000, Brazil
| | - Yhuri C Nobrega
- Projeto Caiman, Instituto Marcos Daniel, Vitória, ES, 29055-290, Brazil
- Departamento de Medicina Veterinária, Centro Universitário FAESA, Vitória, ES, 29053-360, Brazil
| | - Amanda C Covre
- Programa de Pós-graduacão em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Frederico G R França
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil
| |
Collapse
|
2
|
Amavet PS, Pacheco-Sierra G, Uhart MM, Prado WS, Siroski PA. Phylogeographical analysis and phylogenetic inference based on the cytochrome b gene in the genus Caiman (Crocodylia: Alligatoridae) in Central and South America. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
The genus Caiman is one of the most taxonomically conflicted among crocodilians. Caiman crocodilus has four subspecies: Caiman crocodilus crocodilus, Caiman crocodilus fuscus, Caiman crocodilus chiapasius and Caiman crocodilus apaporiensis, but some studies recognize Caiman yacare as a subspecies of C. crocodilus or as a C. crocodilus–C. yacare complex. In Argentina, Caiman latirostris and C. yacare are present and included in sustainable use programmes, although they have hardly been studied at the genetic level. The present study had two main objectives: (1) to study the genetic diversity, structure and phylogeny of C. yacare and C. latirostris in Argentina; and (2) to perform a phylogenetic analysis of the genus Caiman throughout its entire distribution. The results show high haplotype diversity for both species but low nucleotide diversity for C. latirostris. Phylogenetic analysis shows a clear separation between both species but, surprisingly, a well-differentiated clade belonging to the Chaco region was observed. The phylogenetic analysis exhibited clades made up of the sequences of each Caiman species, with some inconsistencies: in the clade of C. crocodilus, one sequence of C. yacare is included, and one clade is observed including sequences from C. c. fuscus and C. c. chiapasius. These data indicate the need to undertake interdisciplinary studies to clarify the taxonomic status of these crocodilian species.
Collapse
Affiliation(s)
- Patricia S Amavet
- Laboratorio de Genética, Departamento de Cs. Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Santa Fe , Argentina
| | - Gualberto Pacheco-Sierra
- Unidad de Biología de la Conservación PCTY, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM) , Yucatán , México
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis , Davis, CA , USA
| | - Walter S Prado
- Dirección Nacional de Biodiversidad, Ministerio de Ambiente y Desarrollo Sostenible , Buenos Aires , Argentina
| | - Pablo A Siroski
- Laboratorio de Ecología Molecular Aplicada (LEMA-ICIVET-CONICET) – FCV, UNL , Esperanza , Argentina
| |
Collapse
|
3
|
Zucoloto RB, Bomfim GC, de Campos Fernandes FM, Schnadelbach AS, Piña CI, Verdade LM. Effective population size of broad-snouted caiman (Caiman latirostris) in Brazil: A historical and spatial perspective. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
4
|
Stocker MR, Brochu CA, Kirk EC. A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversity. PeerJ 2021; 9:e10665. [PMID: 33520458 PMCID: PMC7812925 DOI: 10.7717/peerj.10665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022] Open
Abstract
Dramatic early Cenozoic climatic shifts resulted in faunal reorganization on a global scale. Among vertebrates, multiple groups of mammals (e.g., adapiform and omomyiform primates, mesonychids, taeniodonts, dichobunid artiodactyls) are well known from the Western Interior of North America in the warm, greenhouse conditions of the early Eocene, but a dramatic drop in the diversity of these groups, along with the introduction of more dry-tolerant taxa, occurred near the Eocene–Oligocene boundary. Crocodyliforms underwent a striking loss of diversity at this time as well. Pre-Uintan crocodyliform assemblages in the central Western Interior are characterized by multiple taxa, whereas Chadronian assemblages are depauperate with only Alligator prenasalis previously known. Crocodyliform diversity through the intervening Uintan and Duchesnean is not well understood. The middle Eocene Devil’s Graveyard Formation (DGF) of southwest Texas provides new data from southern latitudes during that crucial period. A new specimen from the middle member of the DGF (late Uintan–Duchesnean) is the most complete cranial material of an alligatorid known from Paleogene deposits outside the Western Interior. We identify this specimen as a caimanine based on notched descending laminae of the pterygoids posterior to the choanae and long descending processes of the exoccipitals that are in contact with the basioccipital tubera. Unlike Eocaiman cavernensis, the anterior palatine process is rounded rather than quadrangular. The relationships and age of this new taxon support the hypothesis that the modern distribution of caimanines represents a contraction of a more expansive early Cenozoic distribution. We hypothesize that the range of caimanines tracked shifting warm, humid climatic conditions that contracted latitudinally toward the hothouse-icehouse transition later in the Eocene.
Collapse
Affiliation(s)
- Michelle R Stocker
- Department of Geosciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, USA
| | - E Christopher Kirk
- Department of Anthropology, The University of Texas at Austin, Austin, TX, USA.,Jackson School Museum of Earth History, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Roberto IJ, Bittencourt PS, Muniz FL, Hernández-Rangel SM, Nóbrega YC, Ávila RW, Souza BC, Alvarez G, Miranda-Chumacero G, Campos Z, Farias IP, Hrbek T. Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus Caiman (Crocodylia, Alligatoridae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1769222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor J. Roberto
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Zoology, Institute of Biological Sciences, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pedro S. Bittencourt
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Fabio L. Muniz
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Sandra M. Hernández-Rangel
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Robson W. Ávila
- Department of Biology, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno C. Souza
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), Boa Vista, RR, Brazil
| | - Gustavo Alvarez
- Wildlife Conservation Society (WCS), Bolivia Program, La Paz, Bolivia
| | | | - Zilca Campos
- Wildlife Laboratory, Brazilian Agricultural Research Corporation (EMBRAPA) Pantanal, Corumbá, MS, Brazil
| | - Izeni P. Farias
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Tomas Hrbek
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
6
|
Abstract
Abstract
Advances in molecular biology and genetics are revealing that many recognized crocodylian species are complexes of two or more cryptic species. These discoveries will have a profound impact on interpretation of the crocodyliform fossil record. Our understanding of ranges of intraspecific variation in modern crocodylian morphology may be based on multiple species and thus express both intraspecific and interspecific variation. This raises questions about our ability to recognize modern species in the fossil record, and it also indicates that specimens from disparate localities or horizons may represent not single widespread species, but multiple related species. Ranges of variation in modern species require a thorough re-evaluation, and we may have to revisit previous perceptions of past crocodyliform diversity, rates of evolution or anagenetic lineages in stratigraphic succession. These challenges will not be unique to those studying crocodyliforms and will require sophisticated approaches to variation among modern and fossil specimens.
Collapse
Affiliation(s)
- Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, USA
| | - Colin D Sumrall
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|