1
|
Comparative Hessian Fly Larval Transcriptomics Provides Novel Insight into Host and Nonhost Resistance. Int J Mol Sci 2021; 22:ijms222111498. [PMID: 34768928 PMCID: PMC8583952 DOI: 10.3390/ijms222111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.
Collapse
|
2
|
Ben Amara W, Quesneville H, Khemakhem MM. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS One 2021; 16:e0257996. [PMID: 34634072 PMCID: PMC8504770 DOI: 10.1371/journal.pone.0257996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadi Quesneville
- INRAE, URGI, Université Paris-Saclay, Versailles, France
- INRAE, BioinfOmics, Plant Bioinformatics Facility, Université Paris-Saclay, Versailles, France
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
3
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
4
|
Al-Jbory Z, El-Bouhssini M, Chen MS. Conserved and Unique Putative Effectors Expressed in the Salivary Glands of Three Related Gall Midge Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5139637. [PMID: 30346621 PMCID: PMC6195418 DOI: 10.1093/jisesa/iey094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 05/08/2023]
Abstract
Species in the stem gall midge genus Mayetiola (Diptera: Cecidomyiidae) cause serious damage to small grain crops. Among Mayetiola species are Hessian fly (Mayetiola destructor Say), barley midge (Mayetiola hordei Keiffer), and oat midge (Mayetiola avenae Marchal). Larvae of these species inject saliva into host tissues to manipulate plants. To identify putative effectors, transcriptomic analyses were conducted on transcripts encoding secreted salivary gland proteins (SSGPs) from first instar larvae of the barley and oat midges, since SSGPs are the most likely source for effector proteins delivered into host tissues. From barley midge, 178 SSGP-encoding unigenes were identified, which were sorted into 51 groups. From oat midge, 194 were obtained and sorted into 50 groups. Predicted proteins within a group had a highly conserved secretion signal peptide and shared at least 30% amino acid identity. Among the identified unigenes from both barley and oat midges, ~68% are conserved either among the three species or between two of them. Conserved SSGPs included members belonging to SSGP-1, SSGP-4, SSGP-11, and SSGP-71 families. Unconventional conservation patterns exist among family members within a species and among different gall midges, indicating that these genes are under high selection pressure, a characteristic of effector genes. SSGPs that are unique to each species were also identified. Those conserved SSGPs may be responsible for host manipulation since the three gall midges produce identical phenotypic symptoms to host plants, whereas the SSGPs unique to each species may be responsible for different host specificity.
Collapse
Affiliation(s)
- Zainab Al-Jbory
- Department of Entomology, Kansas State University, Waters Hall, Manhattan, KS
- College of Agriculture, Green University of Al Qasim, Iraq
| | - Mustapha El-Bouhssini
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat BP 6299, Morocco
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Waters Hall, Manhattan, KS
- Hard Winter Wheat Genetics Research Unit, USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS
| |
Collapse
|
5
|
Bentur JS, Rawat N, Divya D, Sinha DK, Agarrwal R, Atray I, Nair S. Rice-gall midge interactions: Battle for survival. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:40-49. [PMID: 26455891 DOI: 10.1016/j.jinsphys.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 05/28/2023]
Abstract
Gall midges are insects specialized in maneuvering plant growth, metabolic and defense pathways for their benefit. The Asian rice gall midge and rice share such an intimate relationship that there is a constant battle for survival by either partner. Diverse responses by the rice host against the midge include necrotic hypersensitive resistance reaction, non-hypersensitive resistance reaction and gall-forming compatible interaction. Genetic studies have revealed that major R (resistance) genes confer resistance to gall midge in rice. Eleven gall midge R genes have been characterized so far in different rice varieties in India. In addition, no single R gene confers resistance against all the seven biotypes of the Asian rice gall midge, and none of the biotypes is virulent against all the resistance genes. Further, the interaction of the plant resistance gene with the insect avirulence gene is on a gene-for-gene basis. Our recent investigations involving suppressive subtraction hybridization cDNA libraries, microarray analyses, gene expression assays and metabolic profiling have revealed several molecular mechanisms, metabolite markers and pathways that are induced, down-regulated or altered in the rice host during incompatible or compatible interactions with the pest. This is also true for some of the pathways studied in the gall midge. Next generation sequencing technology, gene expression studies and conventional screening of gall midge cDNA libraries highlighted molecular approaches adopted by the insect to feed, survive and reproduce. This constant struggle by the midge to overcome the host defenses and the host to resist the pest has provided us with an opportunity to observe this battle for survival at the molecular level.
Collapse
Affiliation(s)
- Jagadish S Bentur
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - Nidhi Rawat
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - D Divya
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - Deepak K Sinha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ruchi Agarrwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Isha Atray
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
6
|
Johnson AJ, Shukle RH, Chen MS, Srivastava S, Subramanyam S, Schemerhorn BJ, Weintraub PG, Abdel Moniem HEM, Flanders KL, Buntin GD, Williams CE. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor. INSECT MOLECULAR BIOLOGY 2015; 24:191-202. [PMID: 25528896 PMCID: PMC4406158 DOI: 10.1111/imb.12148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions.
Collapse
Affiliation(s)
- A J Johnson
- USDA-ARS, Crop Production and Pest Control Research Unit, West Lafayette, IN, USA; Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stuart JJ, Chen MS, Shukle R, Harris MO. Gall midges (Hessian flies) as plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:339-57. [PMID: 22656645 DOI: 10.1146/annurev-phyto-072910-095255] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gall midges constitute an important group of plant-parasitic insects. The Hessian fly (HF; Mayetiola destructor), the most investigated gall midge, was the first insect hypothesized to have a gene-for-gene interaction with its host plant, wheat (Triticum spp.). Recent investigations support that hypothesis. The minute larval mandibles appear to act in a manner that is analogous to nematode stylets and the haustoria of filamentous plant pathogens. Putative effector proteins are encoded by hundreds of genes and expressed in the HF larval salivary gland. Cultivar-specific resistance (R) genes mediate a highly localized plant reaction that prevents the survival of avirulent HF larvae. Fine-scale mapping of HF avirulence (Avr) genes provides further evidence of effector-triggered immunity (ETI) against HF in wheat. Taken together, these discoveries suggest that the HF, and other gall midges, may be considered biotrophic, or hemibiotrophic, plant pathogens, and they demonstrate the potential that the wheat-HF interaction has in the study of insect-induced plant gall formation.
Collapse
Affiliation(s)
- Jeff J Stuart
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907-2089, USA.
| | | | | | | |
Collapse
|
8
|
Aggarwal R, Benatti TR, Gill N, Zhao C, Chen MS, Fellers JP, Schemerhorn BJ, Stuart JJ. A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes. BMC Genomics 2009; 10:293. [PMID: 19573234 PMCID: PMC2709663 DOI: 10.1186/1471-2164-10-293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 07/02/2009] [Indexed: 11/27/2022] Open
Abstract
Background The Hessian fly (Mayetiola destructor) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species. Results An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC) clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC) methodology, and end-sequenced. Fluorescence in situ hybridization (FISH) co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb). The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS) markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27%) of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs). Conclusion This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is not an absolute barrier to the successful application of the technology. This map will serve as a genomic resource for accelerating gene discovery, genome sequencing, and the assembly of BAC sequences. The Hessian fly BAC-clone assembly, and the names and positions of the BAC clones used in the FISH experiments are publically available at .
Collapse
Affiliation(s)
- Rajat Aggarwal
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shukle RH, Mittapalli O, Morton PK, Chen MS. Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:104-111. [PMID: 19026654 DOI: 10.1016/j.jinsphys.2008.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 05/27/2023]
Abstract
In a salivary gland transcriptomics study we identified a cDNA with a full-length open reading frame for a gene (MdesL1) encoding a lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). Fluorescent in situ hybridization on salivary polytenes positioned MdesL1 on the long arm of Autosome 1. BLASTp and conserved domain searches revealed the deduced amino acid sequence contained a lipase superfamily domain with similarity to lipases and phospholipases from other insects. A secretion signal peptide was identified at the amino terminus of the deduced amino acid sequence. Analysis of the transcript of MdesL1 in larval Hessian fly tissues by quantitative real-time PCR (qPCR) revealed the greatest abundance was in salivary glands. Analysis of transcript levels during development showed the greatest level was detected in feeding 1st-instar and early 2nd-instar larvae. Transcript levels increased dramatically over time in larvae feeding on susceptible wheat but were detected at low levels in larvae feeding on resistant wheat. These data suggest the protein encoded by MdesL1 is likely secreted into host-plant cells during larval feeding and could be involved in extra-oral digestion and changes in host-cell permeability or in generating a second messenger in a host-cell-signaling cascade.
Collapse
Affiliation(s)
- Richard H Shukle
- Crop Production and Pest Control Research Unit, USDA-ARS, Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
10
|
Wu J, Liu X, Zhang S, Zhu YC, Whitworth RJ, Chen MS. Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible and incompatible interactions. J Chem Ecol 2008; 34:1005-12. [PMID: 18584256 DOI: 10.1007/s10886-008-9506-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Accepted: 05/28/2008] [Indexed: 01/24/2023]
Abstract
Four groups of inhibitor-like genes that encode proteins with diverse structures were identified from wheat. The majority of these genes were upregulated by avirulent Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), larvae during incompatible interactions, and were downregulated by virulent larvae during compatible interactions. The upregulation during incompatible interactions and downregulation during compatible interactions resulted in four- to 30-fold differences between the expression levels in resistant plants and those in susceptible plants. The increased expression of inhibitor-like genes during incompatible interactions suggested that these genes are part of defense mechanisms in wheat against Hessian fly attacks, whereas the downregulation during compatible interactions suggested that virulent larvae can suppress plant defenses. Both the upregulation of the inhibitor-like genes during incompatible interactions by avirulent larvae and the downregulation during compatible interactions by virulent larvae were through mechanisms that were independent of the wound response pathway.
Collapse
Affiliation(s)
- Junxiang Wu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | |
Collapse
|
11
|
Chen MS, Zhao HX, Zhu YC, Scheffler B, Liu X, Liu X, Hulbert S, Stuart JJ. Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1-16. [PMID: 17854824 DOI: 10.1016/j.jinsphys.2007.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 05/08/2023]
Abstract
Hessian fly (Mayetiola destructor) larvae are thought to manipulate host growth and metabolism through salivary secretions. However, the transcriptome and proteome of Hessian fly salivary glands have not been systematically analyzed. In this research, we analyzed Expressed-Sequence-Tags (EST) representing 6106 cDNA clones randomly selected from four libraries made from dissected salivary glands. We also analyzed the protein composition of dissected salivary glands using one- and two-dimensional gel electrophoresis as well as LC-MS/MS analysis. Transcriptomic analysis revealed that approximately 60% of the total cDNA clones and 40% of assembled clusters encoded secretory proteins (SP). The SP-encoding cDNAs were grouped into superfamilies and families according to sequence similarities. In addition to the high percentage of SP-encoding transcripts, there was also a high percentage of transcripts encoding proteins that were either involved directly in protein synthesis or in house-keeping functions that provide conditions necessary for protein synthesis. Proteomic analysis also revealed a high percentage of proteins involved in protein synthesis either directly or indirectly. The high percentage of SP-encoding transcripts and high percentage of proteins related to protein synthesis suggested that the salivary glands of Hessian fly larvae are indeed specialized tissues for synthesis of proteins for host injection. However, LC-MS/MS analysis of 64 proteins did not identify any SPs corresponding to the cDNA sequences. The lack of accumulation of SPs in the salivary glands indicated the SPs were likely secreted as soon as they were synthesized.
Collapse
Affiliation(s)
- Ming-Shun Chen
- USDA-ARS Plant Science and Entomology Research Unit, 4008 Throckmorton Hall, 1515 College Avenue, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu X, Bai J, Huang L, Zhu L, Liu X, Weng N, Reese JC, Harris M, Stuart JJ, Chen MS. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J Chem Ecol 2007; 33:2171-94. [PMID: 18058177 DOI: 10.1007/s10886-007-9382-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/16/2007] [Indexed: 01/18/2023]
Abstract
Wheat and its relatives possess a number of resistance (R) genes specific for the Hessian fly (HF) [Mayetiola destructor (Say)]. HF populations overcome R gene resistance by evolving virulence. Virulent HF larvae manipulate the plant to produce a nutritionally enhanced feeding tissue and, probably, also suppress plant defense responses. Using two wheat R genes, H9 and H13, and three HF strains (biotypes) differing in virulence for H9 and H13, we conducted a genome-wide transcriptional analysis of gene expression during compatible interactions with virulent larvae and incompatible interactions with avirulent larvae. During both types of interactions, a large number of genes (>1,000) showed alterations in gene expression. Analysis of genes with known functions revealed that major targets for differential regulation were genes that encoded defense proteins or enzymes involved in the phenylpropanoid, cell wall, and lipid metabolism pathways. A combination of the enhancement of antibiosis defense, the evasion of nutrient metabolism induction, and the fortification and expansion of the cell wall are likely the collective mechanism for host-plant resistance observed during incompatible interactions. To overcome this resistance, virulent larvae appeared to suppress antibiosis defense while inducing nutrient metabolism, weakening cell wall, and inhibiting plant growth.
Collapse
Affiliation(s)
- Xuming Liu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|