1
|
Lei T, Yang Y, Yang WX. Luteinizing Hormone Regulates Testosterone Production, Leydig Cell Proliferation, Differentiation, and Circadian Rhythm During Spermatogenesis. Int J Mol Sci 2025; 26:3548. [PMID: 40332028 PMCID: PMC12027374 DOI: 10.3390/ijms26083548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Male reproductive health, particularly the regulation of spermatogenesis, is controlled by a complex combination of factors, including luteinizing hormone (LH) and its effects on Leydig cells (LCs). LH stimulates testosterone synthesis in LCs, which is critical for maintaining spermatogenesis and male fertility. This review examines the pathways through which LH regulates testosterone production, LC proliferation, differentiation, and circadian rhythm in human and non-human species. In particular, the signaling pathways of luteinizing hormone involved in testosterone production are discussed. Additionally, we explore LH's role in sperm maturation and quality, emphasizing its clinical implications in treating hypogonadotropic hypogonadism and diagnosing gonadal dysfunctions such as androgen insensitivity syndrome and precocious puberty. Furthermore, the potential of LH in assisted reproductive technologies for improving sperm quality is discussed. By highlighting key molecular mechanisms, this work provides insights into the therapeutic potential of LH in addressing male infertility and conditions of LC dysfunction.
Collapse
Affiliation(s)
| | | | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (T.L.); (Y.Y.)
| |
Collapse
|
2
|
Ye X, Li F, Zhang J, Ma H, Ji D, Huang X, Curry TE, Liu W, Liu J. Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic-Pituitary-Gonadal Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10212-10221. [PMID: 28731686 DOI: 10.1021/acs.est.7b02739] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pyrethroids, a class of insecticides that are widely used worldwide, have been identified as endocrine-disrupting chemicals (EDCs). Our recent epidemiological study reported on an association of increased pyrethroids exposure with elevated gonadotropins levels and earlier pubertal development in Chinese boys. In this study, we further investigated the effects of cypermethrin (CP), one of the most ubiquitous pyrethroid insecticides, on hypothalamic-pituitary-gonadal (HPG) axis and pubertal onset in male animal models. Early postnatal exposure to CP at environmentally relevant doses (0.5, 5, and 50 μg/kg CP) significantly accelerated the age of puberty onset in male mice. Administration of CP induced a dose-dependent increase in serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone in male mice. CP did not affect gonadotropin-releasing hormone (GnRH) gene expression in the hypothalamus, but CP at higher concentrations stimulated GnRH pulse frequency. CP could induce the secretion of LH and FSH, as well as the expression of gonadotropin subunit genes [chorionic gonadotropin α (CGα), LHβ, and FSHβ] in pituitary gonadotropes. CP stimulated testosterone production and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in testicular Leydig cells. The interference with hypothalamic sodium channels as well as calcium channels in pituitary gonadotropes and testicular Leydig cells was responsible for CP-induced HPG axis maturation. Our findings established in animal models provide further evidence for the biological plausibility of pyrethroid exposure as a potentially environmental contributor to earlier puberty in males.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou 310036, China
| | - Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Huihui Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Dapeng Ji
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Xin Huang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
3
|
Response to the Svingen Comments on Li et al. Effects of in Utero Exposure to Dicyclohexyl Phthalate on Rat Fetal Leydig Cells. Int. J. Environ. Res. Public Health, 2016, 13, 246. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060533. [PMID: 27231929 PMCID: PMC4923990 DOI: 10.3390/ijerph13060533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/02/2016] [Accepted: 05/23/2016] [Indexed: 12/04/2022]
|
4
|
Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands. PLoS One 2014; 9:e113950. [PMID: 25415588 PMCID: PMC4240664 DOI: 10.1371/journal.pone.0113950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Regucalcin (RGN) is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.
Collapse
|
5
|
Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases. Eur J Pharmacol 2013; 720:326-34. [PMID: 24140436 DOI: 10.1016/j.ejphar.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/25/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022]
Abstract
Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.
Collapse
|
6
|
Matzkin ME, Lauf S, Spinnler K, Rossi SP, Köhn FM, Kunz L, Calandra RS, Frungieri MB, Mayerhofer A. The Ca2+-activated, large conductance K+-channel (BKCa) is a player in the LH/hCG signaling cascade in testicular Leydig cells. Mol Cell Endocrinol 2013; 367:41-9. [PMID: 23267835 DOI: 10.1016/j.mce.2012.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
In Leydig cells, hormonal stimulation by LH/hCG entails increased intracellular Ca(2+) levels and steroid production, as well as hyperpolarization of the cell membrane. The large-conductance Ca(2+)-activated K(+)-channel (BK(Ca)) is activated by raised intracellular Ca(2+) and voltage and typically hyperpolarizes the cell membrane. Whether BK(Ca) is functionally involved in steroid production of Leydig cells is not known. In order to explore this point we first investigated the localization of BK(Ca) in human and hamster testes and then used a highly specific toxin, the BK(Ca) blocker iberiotoxin (IbTx), to experimentally dissect a role of BK(Ca). Immunohistochemistry and RT-PCR revealed that adult Leydig cells of both species are endowed with these channels. Ontogeny studies in hamsters indicated that BK(Ca) becomes strongly detectable in Leydig cells only after they acquire the ability to produce androgens. Using purified Leydig cells from adult hamsters, membrane potential changes in response to hCG were monitored. HCG hyperpolarized the cell membrane, which was prevented by the selective BK(Ca) blocker IbTx. Steroidogenic acute regulatory (StAR) mRNA expression and testosterone production were not affected by IbTx under basal conditions but markedly increased when hCG, in submaximal and maximal concentration or when db-cAMP was added to the incubation media. A blocker of K(V)4-channels, expressed by Leydig cells, namely phrixotoxin-2 (PhTx-2) was not effective. In summary, the data reveal BK(Ca) as a crucial part of the signaling cascade of LH/hCG in Leydig cells. The hyperpolarizing effect of BK(Ca) in the Leydig cell membrane appears to set in motion events limiting the production of testosterone evoked by stimulatory endocrine mechanisms.
Collapse
Affiliation(s)
- M E Matzkin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Laurentino SS, Correia S, Cavaco JE, Oliveira PF, de Sousa M, Barros A, Socorro S. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol Hum Reprod 2012; 18:161-170. [PMID: 22121208 DOI: 10.1093/molehr/gar075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein which plays an important role in the regulation of Ca(2+) homeostasis and has been shown to catalyse an important step in L-ascorbic acid biosynthesis. It is encoded by an X-linked gene and differs from other Ca(2+)-binding proteins by lacking the typical EF-hand Ca(2+)-binding domain. RGN controls intracellular Ca(2+) concentration by regulating the activity of membrane Ca(2+) pumps. Moreover, RGN has been indicated to regulate the activity of numerous enzymes and to act in the regulation of cell proliferation and apoptosis. The importance of Ca(2+) homeostasis in spermatogenesis has been demonstrated by several studies, and its disruption has been shown to cause reversible male infertility. Recently, the expression of RGN in male reproductive tissues has been described and its localization in all testicular cell types was demonstrated. In addition, RGN expression is regulated by androgens, a class of steroid hormones recognized as male germ cell survival factors and of uttermost importance for spermatogenesis. Altogether, available information suggests the hypothesis that RGN might play a role in spermatogenesis, directly or as a mediator of androgen action. This review discusses this hypothesis presenting novel data about RGN expression in human testis.
Collapse
Affiliation(s)
- Sandra S Laurentino
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
8
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|
9
|
Ikeda K, Isaka T, Fujioka K, Manome Y, Tojo K. Suppression of aldosterone synthesis and secretion by ca(2+) channel antagonists. Int J Endocrinol 2012; 2012:519467. [PMID: 23097668 PMCID: PMC3477571 DOI: 10.1155/2012/519467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/17/2012] [Indexed: 01/23/2023] Open
Abstract
Aldosterone, a specific mineralocorticoid receptor (MR) agonist and a key player in the development of hypertension, is synthesized as a final product of renin-angiotensin-aldosterone system. Hypertension can be generally treated by negating the effects of angiotensin II through the use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin II type 1 receptor antagonists (ARBs). However, the efficacy of angiotensin II blockade by such drugs is sometimes diminished by the so-called "aldosterone breakthrough" effect, by which ACE-Is or ARBs (renin-angiotensin system (RAS) inhibitors) gradually lose their effectiveness against hypertension due to the overproduction of aldosterone, known as primary aldosteronism. Although MR antagonists are used to antagonize the effects of aldosterone, these drugs may, however, give rise to life-threatening adverse actions, such as hyperkalemia, particularly when used in conjunction with RAS inhibitors. Recently, several groups have reported that some dihydropyridine Ca(2+) channel blockers (CCBs) have inhibitory actions on aldosterone production in in vitro and in the clinical setting. Therefore, the use of such dihydropyridine CCBs to treat aldosterone-related hypertension may prove beneficial to circumvent such therapeutic problems. In this paper, we discuss the mechanism of action of CCBs on aldosterone production and clinical perspectives for CCB use to inhibit MR activity in hypertensive patients.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
- *Keiichi Ikeda:
| | - Tsuyoshi Isaka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kouki Fujioka
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Katsuyoshi Tojo
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
10
|
Ikeda K, Saito T, Tojo K. Efonidipine, a Ca(2+)-channel blocker, enhances the production of dehydroepiandrosterone sulfate in NCI-H295R human adrenocortical carcinoma cells. TOHOKU J EXP MED 2011; 224:263-71. [PMID: 21757861 DOI: 10.1620/tjem.224.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Steroid biosynthesis is initiated with transportation of cholesterol along with steroidogenic acute regulatory protein (StAR) into the mitchondria and is achieved with several steroidogenic enzymes. It has been reported that Ca(2+) channel blockers (CCBs), such as azelnidipine, efonidipine and nifedipine, suppress the biosynthesis of aldosterone and cortisol, but the overall effects of CCBs on steroid biosynthesis remain to be clarified. The present study was designed to evaluate the effects of CCBs on the expression of steroidogenic enzymes and the production of adrenal androgen, dehydroepiandrosterone sulfate (DHEA-S) that has anti-atherosclerotic actions. NCI-H295R human adrenocortical carcinoma cells and HepG2 human hepatoma cells were cultured for 24 hours with or without a CCB (amlodipine, efonidipine, nifedipine, azelnidipine R(-)-efonidipine, verapamil or diltiazem). HepG2 hepatoma cells were used to confirm the effects of CCBs on the expression of StAR. In fact, efonidipine and nifedipine increased the expression of StAR in HepG2 cells. Efonidipine and nifedipine, but not other examined CCBs, also increased the N(6), 2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP)-induced StAR mRNA, which reflects the action of adrenocorticotropic hormone, and efonidipine and R(-)-efonidipine enhanced the dbcAMP-induced DHEA-S production in NCI-H295R adrenocortical carcinoma cells. Therefore, efonidipine and nifedipine might increase the expression of StAR and, in turn, efonidipine enhanced the dbcAMP-induced DHEA-S production, independent of Ca(2+) channel blockade. These results indicate that such effects are not associated with Ca(2+) influx. Moreover, only efonidipine enhanced the angiotensin II-induced expression of StAR mRNA (P < 0.01 vs. angiotensin II alone). In conclusion, efonidipine might exert an additional action beyond anti-hypertensive actions.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Molecular and Cellular Biology, The Jikei University School of Medicine, Japan.
| | | | | |
Collapse
|
11
|
Laurentino SS, Correia S, Cavaco JE, Oliveira PF, Rato L, Sousa M, Barros A, Socorro S. Regucalcin is broadly expressed in male reproductive tissues and is a new androgen-target gene in mammalian testis. Reproduction 2011; 142:447-456. [PMID: 21680783 DOI: 10.1530/rep-11-0085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Regucalcin (RGN) is a calcium (Ca(2)(+))-binding protein which regulates intracellular Ca(2)(+) homeostasis by modulating the activity of enzymes regulating Ca(2)(+) concentration and enhancing Ca(2)(+)-pumping activity. Several studies have described the pivotal role of proper Ca(2)(+) homeostasis regulation to spermatogenesis and male fertility. Recently, RGN was identified as a sex steroid-regulated gene in prostate and breast; however, a possible role of RGN in spermatogenesis has not been examined. In this study, the expression and localization of RGN in rat and human testis, and other rat reproductive tissues was analyzed. Moreover, we studied whether RGN protein was present in seminiferous tubule fluid (STF). Finally, we examined the effect of 5α-dihydrotestosterone (DHT) on the expression of Rgn mRNA in rat seminiferous tubules (SeT) cultured ex vivo. The results presented in this study show that RGN is expressed in Leydig and Sertoli cells, as well as in all types of germ cells of both rat and human testis. RGN is also expressed in rat prostate, epididymis, and seminal vesicles. Moreover, RGN protein is present in rat STF. The results also demonstrate that Rgn expression is age dependent in rat testis, and is upregulated by the non-aromatizable androgen DHT in rat SeT cultured ex vivo. Taken together, these findings indicate that Rgn is a novel androgen-target gene in rat testis and that it may have a role in male reproductive function, particularly in the control of spermatogenesis.
Collapse
Affiliation(s)
- S S Laurentino
- CICS-UBI Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee JH, Kim JU, Kim C, Min CK. Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca(2+) entry via the T-type Ca(2+) channel. Asian J Androl 2010; 12:807-13. [PMID: 20694017 DOI: 10.1038/aja.2010.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular cAMP and Ca(2+) are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human chorionic gonadotropin (hCG). However, the identification of Ca(2+) entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca(2+) channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca(2+) channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (StAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L(-1) extracellular Ca(2+), hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P < 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P < 0.05). Moreover, the hCG-induced increase in testosterone production was completely removed when external Ca(2+) was omitted, implying that Ca(2+) entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca(2+) currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca(2+) entry carried out by the T-type Ca(2+) channel in the Leydig cells of mice.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330714, South Korea
| | | | | | | |
Collapse
|