1
|
Kawasaki K, Sasagawa I, Mikami M, Nakatomi M, Ishiyama M. Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:455-468. [PMID: 36464775 PMCID: PMC10239528 DOI: 10.1002/jez.b.23183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| |
Collapse
|
2
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Oka S, Shimokawa H, Uchida T. Immunolocalization of enamel matrix protein-like proteins in the tooth enameloid of spotted gar, Lepisosteus oculatus, an actinopterygian bony fish. Connect Tissue Res 2019; 60:291-303. [PMID: 30063414 DOI: 10.1080/03008207.2018.1506446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enameloid is a well-mineralized tissue covering the tooth surface in fish and it corresponds to the outer-most layer of dentin. It was reported that both dental epithelial cells and odontoblasts are involved in the formation of enameloid. Nevertheless, the localization and timing of secretion of ectodermal enamel matrix proteins in enameloid are unclear. In the present study, the enameloid matrix during the stages of enameloid formation in spotted gar, Lepisosteus oculatus, an actinopterygian, was examined mainly by transmission electron microscopy-based immunohistochemistry using an anti-mammalian amelogenin antibody and antiserum. Positive immunoreactivity with the antibody and antiserum was found in enameloid from the surface to the dentin-enameloid junction just before the formation of crystallites. This immunoreactivity disappeared rapidly before the full appearance of crystallites in the enameloid during the stage of mineralization. Immunolabelling was usually found along the collagen fibrils but was not seen on the electron-dense fibrous structures, which were probably derived from matrix vesicles in the previous stage. In inner dental epithelial cells, the granules in the distal cytoplasm often showed positive immunoreactivity, suggesting that the enamel matrix protein-like proteins originated from inner dental epithelial cells. Enamel matrix protein-like proteins in the enameloid matrix might be common to the enamel matrix protein-like proteins previously reported in the collar enamel of teeth and ganoine of ganoid scales, because they exhibited marked immunoreactivity with the same anti-mammalian amelogenin antibodies. It is likely that enamel matrix protein-like proteins are involved in the formation of crystallites along collagen fibrils in enameloid.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- a Advanced Research Center, The Nippon Dental University , Niigata Japan
| | - Mikio Ishiyama
- b Department of Histology , The Nippon Dental University , Niigata Japan
| | - Hiroyuki Yokosuka
- b Department of Histology , The Nippon Dental University , Niigata Japan
| | - Masato Mikami
- c Department of Microbiology , The Nippon Dental University , Niigata , Japan
| | - Shunya Oka
- d Department of Biology , School of Life Dentistry at Niigata, The Nippon Dental University , Niigata Japan
| | - Hitoyata Shimokawa
- e Pediatric Dentistry, Department of Oral Health Sciences , Graduate School, Tokyo Medical and Dental University , Tokyo Japan
| | - Takashi Uchida
- f Department of Oral Biology , Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima Japan
| |
Collapse
|
3
|
Kawasaki K, Mikami M, Nakatomi M, Braasch I, Batzel P, H Postlethwait J, Sato A, Sasagawa I, Ishiyama M. SCPP Genes and Their Relatives in Gar: Rapid Expansion of Mineralization Genes in Osteichthyans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017. [PMID: 28643450 DOI: 10.1002/jez.b.22755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gar is an actinopterygian that has bone, dentin, enameloid, and ganoin (enamel) in teeth and/or scales. Mineralization of these tissues involves genes encoding various secretory calcium-binding phosphoproteins (SCPPs) in osteichthyans, but no SCPP genes have been identified in chondrichthyans to date. In the gar genome, we identified 38 SCPP genes, seven of which encode "acidic-residue-rich" proteins and 31 encode "Pro/Gln (P/Q) rich" proteins. These gar SCPP genes constitute the largest known repertoire, including many newly identified P/Q-rich genes expressed in teeth and/or scales. Among gar SCPP genes, six acidic and three P/Q-rich genes were identified as orthologs of sarcopterygian genes. The sarcopterygian orthologs of most of these acidic genes are involved in bone and/or dentin formation, and sarcopterygian orthologs of all three P/Q-rich genes participate in enamel formation. The finding of these genes in gar suggests that an elaborate SCPP gene-based genetic system for tissue mineralization was already present in stem osteichthyans. While SCPP genes have been thought to originate from ancient SPARCL1, SPARCL1L1 appears to be more closely related to these genes, because it established a structure similar to acidic SCPP genes probably in stem gnathostomes, perhaps at about the same time with the origin of tissue mineralization. Assuming enamel evolved in stem osteichthyans, all P/Q-rich SCPP genes likely arose within the osteichthyan lineage. Furthermore, the absence of acidic SCPP genes in chondrichthyans might be explained by the secondary loss of earliest acidic genes. It appears that many SCPP genes expanded rapidly in stem osteichthyans and in basal actinopterygians.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | | | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Akie Sato
- Department of Anatomy and Histology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| |
Collapse
|
4
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Shimokawa H, Uchida T. Immunohistochemical and Western blot analyses of collar enamel in the jaw teeth of gars, Lepisosteus oculatus, an actinopterygian fish. Connect Tissue Res 2014; 55:225-33. [PMID: 24611716 DOI: 10.3109/03008207.2014.902450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although most fish have no enamel layer in their teeth, those belonging to Lepisosteus (gars), an extant actinopterygian fish genus, do and so can be used to study amelogenesis. In order to examine the collar enamel matrix in gar teeth, we subjected gar teeth to light and electron microscopic immunohistochemical examinations using an antibody against bovine amelogenin (27 kDa) and antiserum against porcine amelogenin (25 kDa), as well as region-specific antibodies and antiserum against the C-terminus and middle region, and N-terminus of porcine amelogenin, respectively. The enamel matrix exhibited intense immunoreactivity to the anti-bovine amelogenin antibody and the anti-porcine amelogenin antiserum in addition to the C-terminal and middle region-specific antibodies, but not to the N-terminal-specific antiserum. These results suggest that the collar enamel matrix of gar teeth contains amelogenin-like proteins and that these proteins possess domains that closely resemble the C-terminal and middle regions of porcine amelogenin. Western blot analyses of the tooth germs of Lepisosteus were also performed. As a result, protein bands with molecular weights of 78 kDa and 65 kDa were clearly stained by the anti-bovine amelogenin antibody as well as the antiserum against porcine amelogenin and the middle-region-specific antibody. It is likely that the amelogenin-like proteins present in Lepisosteus do not correspond to the amelogenins found in mammals, although they do possess domains that are shared with mammalian amelogenins.
Collapse
|
5
|
Assaraf-Weill N, Gasse B, Silvent J, Bardet C, Sire JY, Davit-Béal T. Ameloblasts express type I collagen during amelogenesis. J Dent Res 2014; 93:502-7. [PMID: 24570147 DOI: 10.1177/0022034514526236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enamel and enameloid, the highly mineralized tooth-covering tissues in living vertebrates, are different in their matrix composition. Enamel, a unique product of ameloblasts, principally contains enamel matrix proteins (EMPs), while enameloid possesses collagen fibrils and probably receives contributions from both odontoblasts and ameloblasts. Here we focused on type I collagen (COL1A1) and amelogenin (AMEL) gene expression during enameloid and enamel formation throughout ontogeny in the caudate amphibian, Pleurodeles waltl. In this model, pre-metamorphic teeth possess enameloid and enamel, while post-metamorphic teeth possess enamel only. In first-generation teeth, qPCR and in situ hybridization (ISH) on sections revealed that ameloblasts weakly expressed AMEL during late-stage enameloid formation, while expression strongly increased during enamel deposition. Using ISH, we identified COL1A1 transcripts in ameloblasts and odontoblasts during enameloid formation. COL1A1 expression in ameloblasts gradually decreased and was no longer detected after metamorphosis. The transition from enameloid-rich to enamel-rich teeth could be related to a switch in ameloblast activity from COL1A1 to AMEL synthesis. P. waltl therefore appears to be an appropriate animal model for the study of the processes involved during enameloid-to-enamel transition, especially because similar events probably occurred in various lineages during vertebrate evolution.
Collapse
Affiliation(s)
- N Assaraf-Weill
- UMR 7138-SAE, Research Group "Evolution & Development of the Skeleton", Université Pierre et Marie Curie, 7 quai St-Bernard, Case 5, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
6
|
Oral biosciences: The annual review 2013. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: An approach to understand the origin of the tooth enamel. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Ando H, Inage T, Oida S. Amelogenin in Frog Species, Xenopus tropicalis: A Gene Evolutionary Approach. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Fine structural and immunohistochemical detection of collar enamel in the teeth of Polypterus senegalus, an actinopterygian fish. Cell Tissue Res 2012; 347:369-81. [DOI: 10.1007/s00441-011-1305-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 11/27/2022]
|
10
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Uchida T. Tooth enamel and enameloid in actinopterygian fish. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11706-009-0030-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11706-008-0023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Sasagawa I, Ishiyama M. Fine structural and cytochemical mapping of enamel organ during the enameloid formation stages in gars, Lepisosteus oculatus, Actinopterygii. Arch Oral Biol 2005; 50:373-91. [PMID: 15748691 DOI: 10.1016/j.archoralbio.2004.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
During cap enameloid formation in gars (Lepisosteus oculatus), the dental epithelial cells that constitute the enamel organ were observed by means of transmission electron microscopy and enzyme cytochemistry to detect the hydrolytic enzyme activities, alkaline phosphatase (ALPase), acid phosphatase (ACPase), calcium-dependent adenosine triphosphatase (Ca-ATPase) and potassium-dependent p-nitrophenylphosphatase (K-NPPase) (sodium, potassium-activated adenoshine triphosphatase (Na-K-ATPase)). The enameloid formation process in gars was divided into three stages: matrix formation, mineralisation and maturation. The enamel organ consisted of the outer dental epithelial (ODE) cells, stellate reticulum (SR), stratum intermedium (SI) and the inner dental epithelial (IDE) cells during the whole of the cap enameloid formation stages. During the matrix formation stage, many cisternae of rough endoplasmic reticulum and widely distributed Golgi apparatus, in which the procollagen granules containing cross-striations were often found, were remarkable elements in the IDE cells. During the stage of mineralisation, the IDE cells were tall columnar, and infoldings of distal plasma membrane of the IDE cells became marked. The most developed Golgi apparatus was visible at this stage, and large secretory granules containing fine granular or tubular materials were found in the distal cytoplasm that was close to the infoldings of the distal end. Many lysosomes that were ACPase positive were seen near the Golgi apparatus and in the distal cytoplasm of the IDE cells. ACPase positive granules often contained the cross-striation structure resembling procollagen, suggesting that the procollagen is degenerated in the IDE cells. During the maturation stage, the distal infoldings became unclear, and there were no large granules containing tubular materials, but many ACPase positive lysosomes were still present in the IDE cells. Non-specific ALPase was detected at the plasma membrane of the IDE cells at the mineralisation and maturation stages. K-NPPase was markedly detected at the plasma membrane of the IDE cells at the maturation stage. These results demonstrate that the IDE cells might be mainly involved in the removal of degenerated organic matrix from enameloid during the later formation stages. Strong Ca-ATPase activity was observed at the entire plasma membrane of the stratum intermedium cells, and there was slightly weak activity at the plasma membrane of the IDE cells during the mineralisation and maturation stages, implying that these cells are related to the active Ca transport to the maturing enameloid. It is likely that although the structure of the enamel organ is different, the function, especially at the mineralisation and maturation stages, is similar to other actinopterygians having well-mineralized cap enameloid.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- Department of Anatomy, School of Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | |
Collapse
|
13
|
Sasagawa I, Ishiyama M. Fine structural and cytochemical observations on the dental epithelial cells during cap enameloid formation stages in Polypterus senegalus, a bony fish (Actinopterygii). Connect Tissue Res 2005; 46:33-52. [PMID: 16019412 DOI: 10.1080/03008200590935538] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tooth germs during cap enameloid formation stages in Polypterus senegalus were investigated by transmission electron microscopy and enzyme histo- and cytochemistry. Enameloid formation was divided into three stages: matrix formation, mineralization, and maturation. The enamel organ consisted of the inner dental epithelial cells, stellate reticulum, and outer dental epithelial cells during cap enameloid formation stages, but no stratum intermedium was found. During the matrix formation stage, the tall inner dental epithelial cells contained well-developed Golgi apparatus, abundant cisternae of rough endoplasmic reticulum and mitochondria. Spindle-shaped vesicles containing a filamentous structure were seen in the distal cytoplasm. During mineralization and maturation stages, many ACPase positive lysosomes were present in the cytoplasm, whereas the organelles were decreased in number. The infoldings of the distal plasma membrane of the inner dental epithelial cells were visible in the mineralization stage but were not marked in the maturation stage. The activity of nonspecific ALPase, Ca-ATPase, and K-NPPase was detected at the plasma membrane of the inner dental epithelial cells during the stages of mineralization and maturation. The results of fine structure and enzyme cytochemistry suggested that the dental epithelial cells were mainly involved in the degeneration and removal of enameloid matrix and in material transportation during the enameloid mineralization and maturation stages, rather than in the enameloid matrix formation. The results also showed that the structure of the dental epithelial cells in Polypterus was different from that in teleosts and gars, but that the function of the dental epithelial cells was similar to that in teleosts possessing well-mineralized cap enameloid.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- Department of Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata, Japan.
| | | |
Collapse
|
14
|
Sasagawa I, Ishiyama M. Fine structure and Ca-ATPase activity of the stratum intermedium cells during odontogenesis in gars, Lepisosteus, Actinopterygii. Connect Tissue Res 2003; 43:505-8. [PMID: 12489205 DOI: 10.1080/03008200290001203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This is the first report on the stratum intermedium in vertebrates other than mammals. The aim of this study is to elucidate the fine structure and cytochemical features of the stratum intermedium during the stages of enameloid formation in Lepisosteus. Inner dental epithelium, stratum intermedium, stellate reticulum, and outer dental epithelium are consistently present in the tooth germs of Lepisosteus. The stratum intermedium cells are oval in shape, contain elliptical nuclei, and extend many small processes. It is implied that the structure of the enamel organ is different among actinopterygians, and that constitution of the enamel organ in Lepisosteus resembles that in higher vertebrates. Marked Ca-ATPase activity is observed at the cell membrane of the stratum intermedium cells, suggesting that the cells are involved in calcium transport during the stages of enameloid formation.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- Department of Anatomy, School of Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | |
Collapse
|