1
|
Gao X, Zheng Q, Chen S, He H, Wei Y, Zhang T, Wang Y, Wang B, Huang D, Zhang S, Zhang S, Zhai J. BDE-209 toxicity: From spermiogenesis to sexual maturity in F1 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118231. [PMID: 40311472 DOI: 10.1016/j.ecoenv.2025.118231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Most studies of enviromental toxic chemicals focused on the meiosis stage during spermatogenesis, however, the research on the spermiogenesis damage phenotype of BDE-209 is limited. This study aimed to evaluate the processes by which BDE-209 regulates the formation of acrosomes and mitochondrial sheath (MS), key structures during spermiogenesis and fertilization. ICR mice were divided into control, low, medium, and high-dose BDE-209 groups and treated for 42 days. A comprehensive method combining ultrastructural analysis, transcriptomics, molecular biology, and fertility experiments was adopted. In mice exposed to BDE-209, testicular dysplasia, altered sex hormone concentrations, decreased semen quality, and head and tail deformities occurred. Chromatin condensation failure was present in BDE-209-exposed spermatozoa with decreased mRNA and protein levels of PRM1 and TNP1. BDE-209 disrupts the acrosome biogenesis process by disrupting the Golgi structure and the apical ectoplasmic specialization (ES) structure. BDE-209 exposure caused multiple damage to the MS and down-regulated the mRNA levels of Akap3, Akap4, Cfap44, Ccdc40, Dhah1, etc. These injuries resulted in subfertility in BDE-209 male mice, and the male offspring also exhibited gonadal dysplasia, sex hormonal changes, and decreased semen quality. Conclusively, BDE-209 exposure induced spermiogenesis defects and subfertility. F0 and F1 males showed a similar injury phenotype. This study advanced the understanding of the damage phenotype of spermiogenesis and complemented the reproductive toxicity of F1 male mice. These findings might be important for the study of related molecular mechanisms and the mitigation of BDE-209 exposure on offspring development.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Qi Zheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Siju Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dake Huang
- Department of Microbiology and Parasitology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
2
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Skinner MW, Nhan PB, Simington CJ, Jordan PW. Meiotic divisions and round spermatid formation do not require centriole duplication in mice. PLoS Genet 2025; 21:e1011698. [PMID: 40294089 PMCID: PMC12064039 DOI: 10.1371/journal.pgen.1011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Centrosomes, composed of centrioles and pericentriolar matrix proteins, are traditionally viewed as essential microtubule-organizing centers (MTOCs) that facilitate bipolar spindle formation and chromosome segregation during spermatogenesis. In this study, we investigated the role of centrioles in male germ cell development by using a murine conditional knockout (cKO) of Sas4, a critical component of centriole biogenesis. We found that while centriole duplication was impaired in Sas4 cKO spermatocytes, these cells were still capable of progressing through meiosis I and II. Chromosome segregation was able to proceed through the formation of a non-centrosomal MTOC, indicating that centrioles are not required for meiotic divisions. However, spermatids that inherited fewer than two centrioles exhibited severe defects in spermiogenesis, including improper manchette formation, constricted perinuclear rings, disrupted acrosome morphology, and failure to form flagella. Consequently, Sas4 cKO males were infertile due to the absence of functional spermatozoa. Our findings demonstrate that while centrioles are dispensable for meiosis in male germ cells, they are essential for spermiogenesis and sperm maturation. This work provides key insights into the role of centrosomes in male fertility and may have implications for understanding certain conditions of male infertility associated with centriole defects.
Collapse
Affiliation(s)
- Marnie W. Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Paula B. Nhan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carter J. Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Sheng Y, Yap YT, Li W, Dhikhirullahi O, Niu C, Rabbani M, Krawetz SA, Hammoud SS, Orwig KE, Zhang Z. Normal embryo development needs MEIG1-mediated sperm formation. FASEB J 2025; 39:e70426. [PMID: 40035530 DOI: 10.1096/fj.202500109r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Normal embryo development is a complex process that requires normal sperm to fertilize normal oocytes. Abnormal embryogenesis can be caused by either abnormal oocytes or abnormal sperm. However, the impact of sperm-associated factors is often underappreciated. Association between defects in sperm chromatin and poor embryo development has been consistently reported. In sperm cells, most histones are replaced by protamines to remodel sperm cell chromatin. However, the mechanism of nuclear protein replacement is largely unknown. Meiosis expressed gene 1 (MEIG1) plays a unique role in male fertility. The protein is recruited to the manchette at a late stage of spermatogenesis. The manchette is a unique structure only present in male germ cells, and one of the proposed functions is replacing histones with protamines. In this study, ICSI was conducted using sperm heads from the Meig1 KO mice. Significantly reduced fertilization was observed, and few embryos developed to blastocysts, which were associated with severe sperm DNA damage. Thus, we discovered an unexpected role for MEIG1 extending beyond spermatogenesis to include a role in embryogenesis, likely through remodeling sperm chromatin.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Tian Yap
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Opeyemi Dhikhirullahi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Changmin Niu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhibing Zhang
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
He J, Lin X, Tan C, Li Y, Su L, Lin G, Tan YQ, Tu C. Molecular insights into sperm head shaping and its role in human male fertility. Hum Reprod Update 2025:dmaf003. [PMID: 40037590 DOI: 10.1093/humupd/dmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood. OBJECTIVE AND RATIONALE This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment. SEARCH METHODS We searched the PubMed database for articles published in English using the keyword 'sperm head shaping' in combination with the following terms: 'acrosome formation', 'proacrosomal vesicles (PAVs)', 'manchette', 'perinuclear theca (PT)', 'chromatin condensation', 'linker of nucleoskeleton and cytoskeleton (LINC) complex', 'histone-to-protamine (HTP) transition', 'male infertility', 'ICSI', and 'artificial oocyte activation (AOA)'. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded. OUTCOMES A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head. WIDER IMPLICATIONS Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Collapse
Affiliation(s)
- Jiaxin He
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xinle Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lilan Su
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhou Y, Tu C, Coutton C, Tang J, Tian S, Tang S, Martinez G, Zhou D, Tebbakh C, Wang J, Zouari R, Zhou X, Ben Mustapha SF, Wang X, Wu B, Geng X, Liu S, Jin L, Shi H, Tan YQ, Ray PF, Wang L, Yang X, Zhang F, Liu C. Homozygous deleterious variants in MYCBPAP induce asthenoteratozoospermia involving abnormal acrosome biogenesis, manchette structure and sperm tail assembly in humans and mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:777-792. [PMID: 39704931 DOI: 10.1007/s11427-024-2757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024]
Abstract
Asthenoteratozoospermia is a common cause of male infertility. To further define the genetic causes underlying asthenoteratozoospermia, we performed whole-exome sequencing in a cohort of Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of MYCBPAP were first identified in two unrelated Chinese cases. Replication analyses in a French cohort revealed an additional asthenoter-atozoospermia-affected case harboring a homozygous nonsense variant in MYCBPAP. All of the identified MYCBPAP variants were absent or extremely rare in the public human genome databases. Further functional assays indicated remarkably reduced abundance of MYCBPAP in the spermatozoa from MYCBPAP-associated cases. Subsequently, we generated a Mycbpap knockout (Mycbpap-/-) mouse model, which also exhibited male infertility with reduced sperm motility and abnormal morphologies in sperm heads and flagella. Further investigations demonstrated that Mycbpap-/- male mice presented disrupted acrosome biogenesis and abnormally elongated manchette during spermiogenesis. Intriguingly, proteomic analyses indicated that the proteins related to spermatogenesis, acrosomal and flagellar functions were significantly down-regulated in the testes from Mycbpap-/- male mice. Endogenous immunoprecipitation combined with mass spectrometry revealed interactions of MYCBPAP with a ribosome elimination related protein ARMC3 and central apparatus proteins including CFAP65 and CFAP70. Furthermore, MYCBPAP-associated male infertility in humans and mice could be partially overcome by using intracytoplasmic sperm injections. Collectively, these findings illustrate the essential role of MYCBPAP in normal spermatogenesis and homozygous deleterious variants in MYCBPAP can be considered as a genetic diagnostic indicator for infertile men with asthenoteratozoospermia. Our study will provide effective guidance for genetic counseling, clinical diagnosis and assisted reproduction treatments of MYCBPAP-associated male infertility.
Collapse
Affiliation(s)
- Yiling Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Jianan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Dapeng Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Célia Tebbakh
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China
- Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, 1003, Tunisia
| | - Xuehai Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | | | - Xuemei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Xinyan Geng
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuang Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Huijuan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, 38000, France
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and offspring health, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China.
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|
7
|
Wang HY, Chen KR, Yeh BC, Li WD, Wu SR, Ching YH, Wang CY, Kuo PL. SEPT14 complexes maintain sperm morphogenesis and function. FASEB J 2025; 39:e70414. [PMID: 39982757 DOI: 10.1096/fj.202402135r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Mutations in the septin (SEPT) family lead to male infertility. Septin 14 (SEPT14) is abundantly expressed in the testis, and its expression is significantly reduced in individuals with teratozoospermia, suggesting that SEPT14 may play a role in spermatogenesis. Here, we demonstrated that Sept14 is expressed mainly at the acroplaxome, manchette, neck, and annulus during spermiogenesis. To study the role of SEPT14 in sperm morphogenesis and function, the Sept14 knockout (Sept14-/-) mice were generated. The Sept14-/- male mice were subfertile and presented phenotypes such as irregular acrosomes, DNA damage, disorganized mitochondria, and displaced annuli. These abnormalities contributed to reduced sperm motility and impaired capacitation. Mechanistically, in the sperm head, SEPT14 interacted and colocalized with microtubules and actin during the manchette formation at the sperm metamorphosis phase. In the annulus, SEPT14 interacted with SEPT9, SEPT7, and SEPT2 to form the septin filaments to maintain the localization of the annulus. The GTP-binding domain (GBD) of SEPT14 interacted with the GBD of SEPT2, whereas the C-terminus of SEPT14 interacted with the GBD of SEPT7. Thus, our study reveals a role of SEPT14 in mediating sperm morphogenesis.
Collapse
Affiliation(s)
- Han-Yu Wang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Kuan-Ru Chen
- Department for Medical Research, E-Da Hospital, I-Shou University, Koahsiung, Taiwan
| | - Bor-Chun Yeh
- Department for Medical Research, E-Da Hospital, I-Shou University, Koahsiung, Taiwan
| | - Wei-De Li
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Stojanovic N, Hernández RO, Ramírez NT, Martínez OME, Hernández AH, Shibuya H. CCDC28A deficiency causes head-tail coupling defects and immotility in murine spermatozoa. Sci Rep 2024; 14:26808. [PMID: 39500989 PMCID: PMC11538371 DOI: 10.1038/s41598-024-78453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Male infertility presents a substantial challenge in reproductive medicine, often attributed to impaired sperm motility. The present study investigates the role of CCDC28A, a protein expressed specifically in male germ cells, whose paralog CCDC28B has been implicated in ciliogenesis. We identify unique expression patterns for CCDC28A and CCDC28B within the mouse testes, where CCDC28A is expressed in germ cells, whereas CCDC28B is expressed in supporting somatic cells. Through knockout mouse models and histological analyses, we reveal that CCDC28A deficiency results in diminished sperm motility and structural aberrations in sperm tails, notably affecting the head-tail coupling apparatus (HTCA), thereby causing male infertility. Fine structural analyses by transmission electron microscopy reveal disruptions at the capitulum-basal plate junction of the HTCA in the CCDC28A mutants. This results in the bending of the head within the neck region, often accompanied by thickening of the tail midpiece. Our discovery demonstrates that CCDC28A plays an essential role in male fertility and sperm tail morphogenesis through the formation of HTCA.
Collapse
Affiliation(s)
- Nena Stojanovic
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Rosario Ortiz Hernández
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Nayeli Torres Ramírez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Olga Margarita Echeverría Martínez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Abrahan Hernández Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, 06720, México
- Science for Life Laboratory, Department of Cell and Molecular Biology, National Genomics Infrastructure, Karolinska Institute, Stockholm, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Osaka, Japan.
| |
Collapse
|
9
|
Marino M, Cannarella R, Condorelli RA, Crafa A, La Vignera S, Calogero AE. New Insights of Target Therapy: Effects of Tyrosine Kinase Inhibitors on Male Gonadal Function: A Systematic Review. Clin Genitourin Cancer 2024; 22:102131. [PMID: 38901138 DOI: 10.1016/j.clgc.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024]
Abstract
The number of cancer patients undergoing chronic treatment with target therapy is increasing. Although much is known about the toxicity of conventional anticancer therapies, evidence on the effects of tyrosine kinase inhibitors (TKIs) on fertility is still lacking. Therefore, this review was undertaken to evaluate the effects of TKIs on male gonadal function. A comprehensive search of PubMed and Scopus databases was conducted, focusing on the effects of TKIs on spermatogenesis and testicular endocrine function. We included animal studies, observational studies, and case reports published up to December 31, 2023. Identified articles were reviewed and analyzed to evaluate the impact of TKIs on the male gonad. Their long-term effects, the reversibility of the observed changes, and the underlying molecular mechanisms involved were recorded. The findings emerging on the effects of TKIs on male gonadal function are conflicting. Although specific TKIs (imatinib, gefitinib, sorafenib, sunitinib, quizartinib, dasatinib, and nilotinib) have been identified as potentially as potential interfering with spermatogenesis and hormone production, the extent and severity of these effects may vary from patient to patient and between different drugs within this drug class. Experimental studies on mouse models have suggested a potential interference with spermatogenesis. Evidence also suggests that TKIs affects the hypothalamic-pituitary-testicular axis, decreasing serum testosterone and gonadotropin levels. The effects of TKIs on male gonadal function highlight the need for personalized treatment choices. Potential fertility concerns can help minimize adverse effects and improve patient outcomes. Addressing the potential impact of TKIs on male fertility helps optimize cancer treatment and survival outcomes.
Collapse
Affiliation(s)
- Marta Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Zhang XJ, Hou XN, Zhou JT, Shi BL, Ye JW, Yang ML, Jiang XH, Xu B, Wu LM, Shi QH. CCDC181 is required for sperm flagellum biogenesis and male fertility in mice. Zool Res 2024; 45:1061-1072. [PMID: 39245650 PMCID: PMC11491787 DOI: 10.24272/j.issn.2095-8137.2024.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 09/10/2024] Open
Abstract
The structural integrity of the sperm flagellum is essential for proper sperm function. Flagellar defects can result in male infertility, yet the precise mechanisms underlying this relationship are not fully understood. CCDC181, a coiled-coil domain-containing protein, is known to localize on sperm flagella and at the basal regions of motile cilia. Despite this knowledge, the specific functions of CCDC181 in flagellum biogenesis remain unclear. In this study, Ccdc181 knockout mice were generated. The absence of CCDC181 led to defective sperm head shaping and flagellum formation. Furthermore, the Ccdc181 knockout mice exhibited extremely low sperm counts, grossly aberrant sperm morphologies, markedly diminished sperm motility, and typical multiple morphological abnormalities of the flagella (MMAF). Additionally, an interaction between CCDC181 and the MMAF-related protein LRRC46 was identified, with CCDC181 regulating the localization of LRRC46 within sperm flagella. These findings suggest that CCDC181 plays a crucial role in both manchette formation and sperm flagellum biogenesis.
Collapse
Affiliation(s)
- Xiang-Jun Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Ning Hou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jian-Teng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Bao-Lu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jing-Wei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Meng-Lei Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Hua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Li-Min Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China. E-mail:
| | - Qing-Hua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China. E-mail:
| |
Collapse
|
11
|
Bragina E, Kurchashova S, Suhomlinova M, Gasanova T, Ermolaeva S, Sorokina T, Kirs E, Arifulin E, Solovova O, Ryzhkova O, Khayat S, Andreeva M, Chernykh V. Atypical structure of the nuclear membrane, distribution of nuclear pores and lamin B1 in spermatozoa of patients with complete and partial globozoospermia. Front Genet 2024; 15:1427838. [PMID: 39045326 PMCID: PMC11263118 DOI: 10.3389/fgene.2024.1427838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Globozoospermia is a form of male infertility characterized by spermatozoa with spherical heads lacking acrosomes. The aim of this study was to evaluate ultrastructural and molecular defects in different types of globozoospermia. Semen samples from 12 infertile patients (9 with complete globozoospermia and 3 with partial globozoospermia) and 10 normozoospermic men (control) were examined by transmission electron microscopy and immunocytochemistry with antibodies against lamin B1. The presence of lamin A and progerin was assessed by reverse transcription-PCR. Whole exome sequencing was performed in three patients. In semen samples with complete and partial globozoospermia, lamin B1 was observed at the periphery of sperm nuclei, whereas lamin A and progerin were absent. Nuclear envelope pores were found in spermatozoa from both patient groups, regardless of morphology and chromatin condensation, in contrast to the control group. Non-condensed chromatin was present in 51%-81% of cases of complete globozoospermia and in 36%-79% of cases of partial globozoospermia. Homozygous DPY19L2 and SPATA16 variants were identified in two patients with partial globozoospermia and one patient with complete globozoospermia. An atypical nuclear membrane with abnormal nuclear pore distribution and lamin B1 localization was observed in spermatozoa from patients with both complete and partial globozoospermia. The genetic defects in the DPY19L2 and SPATA16 genes detected in patients from both globozoospermic groups suggest a generalized disruption of nuclear structure in globozoospermia, highlighting the genetic and phenotypic similarities between complete and partial globozoospermia.
Collapse
Affiliation(s)
- Elizaveta Bragina
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University (MSU), Moscow, Russia
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Svetlana Kurchashova
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University (MSU), Moscow, Russia
| | - Marina Suhomlinova
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University (MSU), Moscow, Russia
| | - Tatiana Gasanova
- Faculty of Biology, Lomonosov Moscow State University (MSU), Moscow, Russia
| | | | | | - Eva Kirs
- Novosibirsk Center for Reproductive Medicine, Novosibirsk, Russia
| | - Evgeniy Arifulin
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University (MSU), Moscow, Russia
| | - Olga Solovova
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Oxana Ryzhkova
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Sabina Khayat
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | | | - Vyacheslav Chernykh
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Wang Y, Huang X, Sun G, Chen J, Wu B, Luo J, Tang S, Dai P, Zhang F, Li J, Wang L. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. J Genet Genomics 2024; 51:407-418. [PMID: 37709195 DOI: 10.1016/j.jgg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 in sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Collapse
Affiliation(s)
- Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoying Sun
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jingwen Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiahui Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Shuyan Tang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
13
|
Zhang GM, Liu PH, Chen L, Zheng JM, Zhao GP, Xing WH, Wen J, Li QH. Genome-wide association study identifies variants associated with semen volume in white-feathered broilers. Anim Genet 2023; 54:803-807. [PMID: 37705287 DOI: 10.1111/age.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Semen is a measure of the reproductive efficiency of roosters, which affects the economic benefits of white-feathered broilers. Over the years, research in this field has mainly focused on hens, while there have been fewer studies on the reproductive traits of roosters. To identify the genes related to the semen traits of roosters, we used a chicken 55 K SNP chip to genetically type the white-feathered population (220) and performed imputation with resequencing data from 97 roosters. In total, 1 048 576 SNPs were obtained and used for genome-wide association analysis of semen volume, from which 197 genome-wide significant markers were identified, all within the interval of 13.82-16.12 Mb on chromosome 7. By combining our results with the biological functions of genes in the interval, four candidate genes were identified that potentially relate to semen volume: FAPP1, OSBPL6, SESTD1 and SSFA2. Our findings may provide a basis for further research on the genetic mechanism and marker-assisted selection of semen volume in white-feathered broilers.
Collapse
Affiliation(s)
- G M Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - P H Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - J M Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - G P Zhao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W H Xing
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Wen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q H Li
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Hu W, Zhang R, Xu H, Li Y, Yang X, Zhou Z, Huang X, Wang Y, Ji W, Gao F, Meng W. CAMSAP1 role in orchestrating structure and dynamics of manchette microtubule minus-ends impacts male fertility during spermiogenesis. Proc Natl Acad Sci U S A 2023; 120:e2313787120. [PMID: 37903275 PMCID: PMC10636317 DOI: 10.1073/pnas.2313787120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
The manchette is a crucial transient structure involved in sperm development, with its composition and regulation still not fully understood. This study focused on investigating the roles of CAMSAP1 and CAMSAP2, microtubule (MT) minus-end binding proteins, in regulating manchette MTs, spermiogenesis, and male fertility. The loss of CAMSAP1, but not CAMSAP2, disrupts the well-orchestrated process of spermiogenesis, leading to abnormal manchette elongation and delayed removal, resulting in deformed sperm nuclei and tails resembling oligoasthenozoospermia symptoms. We investigated the underlying molecular mechanisms by purifying manchette assemblies and comparing them through proteomic analysis, and results showed that the absence of CAMSAP1 disrupted the proper localization of key proteins (CEP170 and KIF2A) at the manchette minus end, compromising its structural integrity and hindering MT depolymerization. These findings highlight the significance of maintaining homeostasis in manchette MT minus-ends for shaping manchette morphology during late spermiogenesis, offering insights into the molecular mechanisms underlying infertility and sperm abnormalities.
Collapse
Affiliation(s)
- Weichang Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Rui Zhang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaojuan Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong510320, China
| | - Fei Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
15
|
Chen J, Wang Y, Wu B, Shi H, Wang L. Experimental and molecular support for Cfap70 as a causative gene of 'multiple morphological abnormalities of the flagella' with male infertility†. Biol Reprod 2023; 109:450-460. [PMID: 37458246 DOI: 10.1093/biolre/ioad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple morphological abnormalities of the flagella, a severe form of asthenozoospermia, can lead to male infertility. Recent studies have implicated an association between human CFAP70 deficiency and multiple morphological abnormalities of the flagella; however, the underlying biological mechanism and supporting experimental evidence in animal models remain unclear. To address this gap, we used CRISPR/Cas9 technology to generate Cfap70-deficient mice to investigate the relationship between Cfap70 deficiency and multiple morphological abnormalities of the flagella. Our findings show that the loss of CFAP70 leads to multiple morphological abnormalities of the flagella and spermiogenesis defects. Specifically, the lack of CFAP70 impairs sperm flagellum biogenesis and head shaping during spermiogenesis. Late-step spermatids from Cfap70-deficient mouse testis exhibited club-shaped sperm heads and abnormal disassembly of the manchette. Furthermore, we found that CFAP70 interacts with DNAI1 and DNAI2; Cfap70 deficiency also reduces the level of AKAP3 in sperm flagella, indicating that CFAP70 may participate in the flagellum assembly and transport of flagellar components. These findings provide compelling evidence implicating Cfap70 as a causative gene of multiple morphological abnormalities of the flagella and highlight the consequences of CFAP70 loss on flagellum biogenesis.
Collapse
Affiliation(s)
- Jingwen Chen
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bangguo Wu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhang Y, Tang J, Wang X, Sun Y, Yang T, Shen X, Yang X, Shi H, Sun X, Xin A. Loss of ACTL7A causes small head sperm by defective acrosome-acroplaxome-manchette complex. Reprod Biol Endocrinol 2023; 21:82. [PMID: 37667331 PMCID: PMC10476415 DOI: 10.1186/s12958-023-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. In this study, we aim to explore the additional functions of ACTL7A beyond the process of acrosome biogenesis and investigate the possible underlying mechanisms. METHODS Nuclear morphology analysis was used to observe the sperm head shape of ACTL7A-mutated patients. Actl7a knock-out (KO) mouse model was generated. Immunofluorescence and transmission electron microscopy (TEM) were performed to analyze the structure of spermatids during spermiogenesis. Tandem mass tags labeling quantitative proteomics strategy was employed to explore the underlying molecular mechanisms. The expression levels of key proteins in the pathway were analyzed by western blotting. Intracytoplasmic sperm injection (ICSI)-artificial oocyte activation (AOA) technology was utilized to overcome fertilization failure in male mice with a complete knockout of Actl7a. RESULTS The new phenotype of small head sperm associated with loss of ACTL7A in patients was discovered, and further confirmed in Actl7a-KO mice. Immunofluorescence and TEM analyses revealed that the deletion of ACTL7A damaged the formation of acrosome-acroplaxome-manchette complex, leading to abnormalities in the shaping of sperm heads. Moreover, a proteomic analysis of testes from WT and Actl7a-KO mice revealed that differentially expressed genes were notably enriched in PI3K/AKT/mTOR signaling pathway which is strongly associated with autophagy. Inhibition of autophagy via PI3K/AKT/mTOR signaling pathway activation leading to PDLIM1 accumulation might elucidate the hindered development of manchette in Actl7a-KO mice. Remarkably, AOA successfully overcame fertilization failure and allowed for the successful production of healthy offspring from the Actl7a complete knockout male mice. CONCLUSIONS Loss of ACTL7A causes small head sperm as a result of defective acrosome-acroplaxome-manchette complex via autophagy inhibition. ICSI-AOA is an effective technique to rescue male infertility resulting from ACTL7A deletion. These findings provide essential evidence for the diagnosis and treatment of patients suffering from infertility.
Collapse
Affiliation(s)
- Yini Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jianan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Xuemei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Yisi Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Tianying Yang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiaorong Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Xinyue Yang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Huijuan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Aijie Xin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), School of Pharmacy, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Orsi GA, Tortora MMC, Horard B, Baas D, Kleman JP, Bucevičius J, Lukinavičius G, Jost D, Loppin B. Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis. Nat Commun 2023; 14:4187. [PMID: 37443316 PMCID: PMC10345107 DOI: 10.1038/s41467-023-39908-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38000, Grenoble, France.
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Dominique Baas
- Laboratoire MeLiS, CNRS UMR 52684, Inserm U 1314, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR5075, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
18
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Duangchit S, Wakayama T. Expression of Protein Markers in Spermatogenic and Supporting Sertoli Cells Affected by High Abdominal Temperature in Cryptorchidism Model Mice. J Histochem Cytochem 2023; 71:387-408. [PMID: 37431084 PMCID: PMC10363907 DOI: 10.1369/00221554231185626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Cryptorchidism is a congenital abnormality resulting in increased rates of infertility and testicular cancer. We used cryptorchidism model mice that presented with the translocation of the left testis from the scrotum to the abdominal cavity. Mice underwent the surgical procedure of the left testis at day 0 and were sacrificed at days 3, 5, 7, 14, 21, and 28 post-operatively. The weight of the left cryptorchid testis decreased significantly at days 21 and 28. The morphological changes were observed after 5 days and showed detached spermatogenic cells and abnormal formation of acrosome at day 5, multinucleated giant cells at day 7, and atrophy of seminiferous tubules at days 21 and 28. The high abdominal temperature disrupted the normal expression of cell adhesion molecule-1, Nectin-2, and Nectin-3 which are essential for spermatogenesis. In addition, the pattern and alignment of acetylated tubulin in cryptorchid testes were also changed at days 5, 7, 14, 21, and 28. Ultrastructure of cryptorchid testes revealed giant cells that had been formed by spermatogonia, spermatocytes, and round and elongating spermatids. The study's findings reveal that cryptorchidism's duration is linked to abnormal changes in the testis, impacting protein marker expression in spermatogenic and Sertoli cells. These changes stem from the induction of high abdominal temperature.
Collapse
Affiliation(s)
- Arunothai Wanta
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Suthat Duangchit
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Wojtczak A. Differentiation Disorders of Chara vulgaris Spermatids following Treatment with Propyzamide. Cells 2023; 12:cells12091268. [PMID: 37174667 PMCID: PMC10177507 DOI: 10.3390/cells12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Microtubules are cytoskeletal cell elements that also build flagella and cilia. Moreover, these structures participate in spermatogenesis and form a microtubular manchette during spermiogenesis. The present study aims to assess the influence of propyzamide, a microtubule-disrupting agent, on alga Chara vulgaris spermatids during their differentiation by means of immunofluorescent and electron microscopy methods. Propyzamide blocks the functioning of the β-tubulin microtubule subunit, which results in the creation of a distorted shape of a sperm nucleus at some stages. Present ultrastructural studies confirm these changes. In nuclei, an altered chromatin arrangement and nuclear envelope fragmentation were observed in the research as a result of incorrect nucleus-cytoplasm transport behavior that disturbed the action of proteolytic enzymes and the chromatin remodeling process. In the cytoplasm, large autolytic vacuoles and the dilated endoplasmic reticulum (ER) system, as well as mitochondria, were revealed in the studies. In some spermatids, the arrangement of microtubules present in the manchette was disturbed and the structure was also fragmented. The observations made in the research at present show that, despite some differences in the manchette between Chara and mammals, and probably also in the alga under study, microtubules participate in the intramanchette transport (IMT) process, which is essential during spermatid differentiation. In the present study, the effect of propyzamide on Chara spermiogenesis is also presented for the first time; however, the role of microtubule-associated proteins in this process still needs to be elucidated in the literature.
Collapse
Affiliation(s)
- Agnieszka Wojtczak
- Faculty of Biology and Environmental Protection, Department of Cytophysiology, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland
| |
Collapse
|
20
|
Yap YT, Li W, Huang Q, Zhou Q, Zhang D, Sheng Y, Mladenovic-Lucas L, Yee SP, Orwig KE, Granneman JG, Williams DC, Hess RA, Toure A, Zhang Z. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice. eLife 2023; 12:e79620. [PMID: 37083624 PMCID: PMC10185345 DOI: 10.7554/elife.79620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Wei Li
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Qian Huang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - Qi Zhou
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - David Zhang
- College of William and MaryWilliamsburgUnited States
| | - Yi Sheng
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Ljljiana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North CarolinaChapel HillUnited States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of IllinoisUrbanaUnited States
| | - Aminata Toure
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Physiology and Pathophysiology of Sperm cells, Institute for Advanced BiosciencesGrenobleFrance
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics & Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
21
|
Uemura KI, Miyazono Y, Hiroshige T, Ohta K, Ueda K, Nishihara K, Nakiri M, Hirashima S, Igawa T, Nakamura KI. Three-Dimensional Ultrastructural and Volume Analysis of the Redundant Nuclear Envelope of Developing and Matured Sperm in Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:832-840. [PMID: 37749734 DOI: 10.1093/micmic/ozad003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 09/27/2023]
Abstract
The ultrastructure of the nuclear envelope (NE) and redundant NE (RNE) of the spermatozoon cannot be observed in detail using conventional electron microscopy. Thus, this study aimed to employ transmission electron microscopy (TEM) and focused ion beam/scanning electron microscopy (FIB/SEM) tomography to fill this research gap. Male mice aged 13 weeks were deeply anesthetized, and the testes and vas deferens were extracted and processed for electron microscopy. In round spermatids, the acrosomal vesicle compressed the nucleus, and the acrosomal center was depressed. The nucleoli concentrated on the contralateral side of the acrosome formation site. In mature spermatozoa, the RNE accumulated in the neck with the residual bodies. The NE pores exhibited a hexagonal pattern. The body surface area and volume of the nuclei of spermatids and spermatozoa in each maturation phase were analyzed using FIB/SEM tomography. The body surface area and volume of the nuclei decreased during spermatid maturation into spermatozoa. The RNE converged at the sperm neck and possessed a honeycomb structure. The method used revealed that the nuclei of spermatids gradually condense as they mature into spermatozoa. This method may be used to analyze small tissues, such as RNE, and detect morphological abnormalities in microtissues, such as spermatozoa.
Collapse
Affiliation(s)
- Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Miyazono
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Kiyoaki Nishihara
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Makoto Nakiri
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Shingo Hirashima
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
22
|
Zhu H, Wen Z, Zhang A, Liu D, Wang H, Cheng Y, Yang X, Xiao Y, Li J, Sun D, Wu B, Gao J. RhoGDIα regulates spermatogenesis through Rac1/cofilin/F-actin signaling. Commun Biol 2023; 6:214. [PMID: 36823181 PMCID: PMC9950379 DOI: 10.1038/s42003-023-04579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Spermatogenesis is an extremely complex process, and any obstruction can cause male infertility. RhoGDIα has been identified as a risk of male sterility. In this study, we generate RhoGDIα knockout mice, and find that the males have severely low fertility. The testes from RhoGDIα-/- mice are smaller than that in WT mice. The numbers of spermatogonia and spermatocytes are decreased in RhoGDIα-/- testis. Spermatogenesis is compromised, and spermatocyte meiosis is arrested at zygotene stage in RhoGDIα-/- mice. Acrosome dysplasia is also observed in sperms of the mutant mice. At the molecular level, RhoGDIα deficiency activate the LIMK/cofilin signaling pathway, inhibiting F-actin depolymerization, impairing testis and inducing low fertility in mouse. In addition, the treatment of RhoGDIα-/- mice with Rac1 inhibitor NSC23766 alleviate testis injury and improve sperm quality by inhibiting the LIMK/cofilin/F-actin pathway during spermatogenesis. Together, these findings reveal a previously unrecognized RhoGDIα/Rac1/F-actin-dependent mechanism involved in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Xing Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, National Health and Family Planning Commission, Beijing, 100081, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
23
|
Otčenášková T, Macíčková E, Vondráková J, Frolíková M, Komrskova K, Stopková R, Stopka P. Proteomic analysis of the mouse sperm acrosome - towards an understanding of an organelle with diverse functionality. Eur J Cell Biol 2023; 102:151296. [PMID: 36805822 DOI: 10.1016/j.ejcb.2023.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The acrosome located within the mammalian sperm head is essential for successful fertilization, as it enables the sperm to penetrate the extracellular layers of the oocyte and fuse with oolemma. However, the mammalian acrosomal vesicle is no longer considered to contain only hydrolytic enzymes. Using label-free nano-scale liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics, we identified a total of 885 proteins in the acrosome isolated from spermatozoa obtained from cauda epididymis of free-living house mice Mus musculus musculus contains a total of 885 proteins. Among these, 334 proteins were significantly enriched in the acrosome thus representing 27.3% of the whole proteome of the intact sperm. Importantly, we have detected a total of nine calycins while eight of them belong to the lipocalin protein family. In mice, lipocalins are involved in multi-level chemical communication between individuals including pheromone transport and odor perception. Using an indirect immunofluorescence assay, we demonstrated that lipocalin 5 (LCN5) is expressed in the mouse germ cells, and after completing spermatogenesis, it remains localized in the sperm acrosome until the last step of the extratesticular maturation, the acrosome reaction. The presence of lipocalins in the acrosome and acrosome-reacted sperm suggests their original role as chelators of organic and potentially toxic compounds resulting from ongoing spermiogenesis. Along with this evidence, detected mitochondrial (e.g., a subunit of the cytochrome c oxidase MTCO1) and proteasomal proteins (subunits of both 20 S core proteasome [PSMA2, PSMBs] and 19 S regulatory particle [PSMDs]) in acrosomes provide further evidence that acrosomes could also function as `waste baskets` after testicular sperm maturation.
Collapse
Affiliation(s)
- Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Eliška Macíčková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Jana Vondráková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Michaela Frolíková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Katerina Komrskova
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
24
|
Zhu T, Zhang Y, Sheng X, Zhang X, Chen Y, Zhu H, Guo Y, Qi Y, Zhao Y, Zhou Q, Chen X, Guo X, Zhao C. Absence of CEP78 causes photoreceptor and sperm flagella impairments in mice and a human individual. eLife 2023; 12:76157. [PMID: 36756949 PMCID: PMC9984195 DOI: 10.7554/elife.76157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Cone-rod dystrophy (CRD) is a genetically inherited retinal disease that can be associated with male infertility, while the specific genetic mechanisms are not well known. Here, we report CEP78 as a causative gene of a particular syndrome including CRD and male infertility with multiple morphological abnormalities of sperm flagella (MMAF) both in human and mouse. Cep78 knockout mice exhibited impaired function and morphology of photoreceptors, typified by reduced ERG amplitudes, disrupted translocation of cone arrestin, attenuated and disorganized photoreceptor outer segments (OS) disks and widen OS bases, as well as interrupted connecting cilia elongation and abnormal structures. Cep78 deletion also caused male infertility and MMAF, with disordered '9+2' structure and triplet microtubules in sperm flagella. Intraflagellar transport (IFT) proteins IFT20 and TTC21A are identified as interacting proteins of CEP78. Furthermore, CEP78 regulated the interaction, stability, and centriolar localization of its interacting protein. Insufficiency of CEP78 or its interacting protein causes abnormal centriole elongation and cilia shortening. Absence of CEP78 protein in human caused similar phenotypes in vision and MMAF as Cep78-/- mice. Collectively, our study supports the important roles of CEP78 defects in centriole and ciliary dysfunctions and molecular pathogenesis of such multi-system syndrome.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yuxin Zhang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xunlun Sheng
- Gansu Aier Ophthalmiology and Optometry HospitalLanzhouChina
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical UniversityYinchuanChina
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Hongjing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yichen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Qi Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Chen Zhao
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
25
|
Yan W. Calicin is a key sperm head-shaping factor essential for male fertility. Sci Bull (Beijing) 2022; 67:2395-2397. [PMID: 36566059 PMCID: PMC10019501 DOI: 10.1016/j.scib.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles 90095, USA.
| |
Collapse
|
26
|
Özbek M, Beyaz F, Ergün E, Ergün L, Karaca H, Cabir A, Alesawi YAK. Identification of some calcium binding proteins and neural cell markers in rat testis and epididymis during postnatal development. Andrologia 2022; 54:e14633. [DOI: 10.1111/and.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine Mehmet Akif Ersoy University Burdur Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine Erciyes University Kayseri Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine Mehmet Akif Ersoy University Burdur Turkey
| | - Ahmet Cabir
- Department of Histology and Embryology, Faculty of Veterinary Medicine Erciyes University Kayseri Turkey
| | - Yahy Abood Kareem Alesawi
- Department of Histology and Embryology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
27
|
Mutations in CCIN cause teratozoospermia and male infertility. Sci Bull (Beijing) 2022; 67:2112-2123. [PMID: 36546111 DOI: 10.1016/j.scib.2022.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023]
Abstract
Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the etiology remains unknown for a majority of affected men. Here, we identified a homozygous missense mutation and a compound heterozygous mutation of CCIN in patients suffering from teratozoospermia. CCIN encodes the cytoskeletal protein Calicin that is involved in the formation and maintenance of the highly regular organization of the calyx of mammalian spermatozoa, and has been proposed to play a role in sperm head structure remodeling during the process of spermiogenesis. Our morphological and ultrastructural analyses of the spermatozoa obtained from all three men harboring deleterious CCIN mutants reveal severe head malformation. Further immunofluorescence assays unveil markedly reduced levels of Calicin in spermatozoa. These patient phenotypes are successfully recapitulated in mouse models expressing the disease-associated variants, confirming the role of Calicin in male fertility. Notably, all mutant spermatozoa from mice and human patients fail to adhere to the zona mass, which likely is the major mechanistic reason for CCIN-mutant sperm-derived infertility. Finally, the use of intra-cytoplasmic sperm injections (ICSI) successfully makes mutated mice and two couples with CCIN variants have healthy offspring. Taken together, our findings identify the role of Calicin in sperm head shaping and male fertility, providing important guidance for genetic counseling and assisted reproduction treatments.
Collapse
|
28
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
29
|
Liu X, Zang C, Wu Y, Meng R, Chen Y, Jiang T, Wang C, Yang X, Guo Y, Situ C, Hu Z, Zhang J, Guo X. Homeodomain-interacting protein kinase HIPK4 regulates phosphorylation of manchette protein RIMBP3 during spermiogenesis. J Biol Chem 2022; 298:102327. [PMID: 35931115 PMCID: PMC9440445 DOI: 10.1016/j.jbc.2022.102327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nonobstructive azoospermia (NOA) is the most serious form of spermatogenesis abnormalities in male infertility. Genetic factors are important to consider as elements leading to NOA. Although many pathogenic genes have been reported, the causative genes of NOA for many patients are still unknown. In this study, we found ten point mutations in the gene encoding homeodomain-interacting protein kinase 4 (HIPK4) in patients with NOA, and using in vitro studies, we determined a premature termination point mutation (p. Lys490∗, c.1468A>T) that can cause decreased expression of HIPK4. Our phosphoproteomic analysis of Hipk4−/− testes revealed phosphorylation of multiple proteins regulated by HIPK4 during spermiogenesis. We also confirmed that a substrate of HIPK4 with four downregulated phosphorylation sites matching the xSPx motif is the known manchette-related protein RIMS-binding protein 3, which is required for sperm head morphogenesis. Therefore, we conclude HIPK4 regulates the phosphorylation of manchette protein RIMS-binding protein 3 and plays essential roles in sperm head shaping and male fertility.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ru Meng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyu Yang
- Center of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Huang G, Zhang X, Yao G, Huang L, Wu S, Li X, Guo J, Wen Y, Wang Y, Shang L, Li N, Xu W. A loss-of-function variant in SSFA2 causes male infertility with globozoospermia and failed oocyte activation. Reprod Biol Endocrinol 2022; 20:103. [PMID: 35836265 PMCID: PMC9281110 DOI: 10.1186/s12958-022-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Globozoospermia (OMIM: 102530) is a rare type of teratozoospermia (< 0.1%). The etiology of globozoospermia is complicated and has not been fully revealed. Here, we report an infertile patient with globozoospermia. Variational analysis revealed a homozygous missense variant in the SSFA2 gene (NM_001130445.3: c.3671G > A; p.R1224Q) in the patient. This variant significantly reduced the protein expression of SSFA2. Immunofluorescence staining showed positive SSFA2 expression in the acrosome of human sperm. Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and Coimmunoprecipitation (Co-IP) analyses identified that GSTM3 and Actin interact with SSFA2. Further investigation revealed that for the patient, regular intracytoplasmic sperm injection (ICSI) treatment had a poor prognosis. However, Artificial oocyte activation (AOA) by a calcium ionophore (A23187) after ICSI successfully rescued the oocyte activation failure for the patient with the SSFA2 variant, and the couple achieved a live birth. This study revealed that SSFA2 plays an important role in acrosome formation, and the homozygous c.3671G > A loss-of-function variant in SSFA2 caused globozoospermia. SSFA2 may represent a new gene in the genetic diagnosis of globozoospermia, especially the successful outcome of AOA-ICSI treatment for couples, which has potential value for clinicians in their treatment regimen selections.
Collapse
Affiliation(s)
- Gelin Huang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guanping Yao
- Department of Reproductive Medicine Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Huang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sixian Wu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoliang Li
- Department of Reproductive Endocrinology of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Juncen Guo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuting Wen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Reproductive Endocrinology of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Joint Lab for Reproductive Medicine(SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Zhang XZ, Wei LL, Zhang XH, Jin HJ, Chen SR. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice. Development 2022; 149:275523. [DOI: 10.1242/dev.200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.
Collapse
Affiliation(s)
- Xiao-Zhen Zhang
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Lin-Lin Wei
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Xiao-Hui Zhang
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Hui-Juan Jin
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Su-Ren Chen
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| |
Collapse
|
32
|
Wang J, Liu Z, Gao X, Du C, Hou C, Tang D, Lou B, Shen W, Zhu J. The potential function of KIF17 in large yellow croaker (Larimichthys crocea) spermatid remodeling: molecular characterization and expression pattern during spermiogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:603-616. [PMID: 35538183 DOI: 10.1007/s10695-021-01035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
KIF17, which belongs to the kinesin-2 protein family, plays an indispensable role in mammalian spermiogenesis. However, the role of KIF17 in fish spermatid remodeling during spermiogenesis remains poorly understood. Therefore, we aimed to study the role of KIF17 in spermatid remodeling during Larimichthys crocea (L. crocea) spermiogenesis. The kif17 cDNA sequence, 3247 bp in length, was cloned from L. crocea testis, which consisted of a 347-bp 5'-untranslated region (UTR), 413-bp 3' -UTR, and 2487-bp open reading frame. Bioinformatic analyses revealed that KIF17 obtained from L. crocea (Lc-KIF17) exhibited a high sequence identity compared with those from other teleosts and possessed the structural features of other kinesin-2 proteins. Based on structural similarity, we speculate that the role of Lc-KIF17 may be similar to that of KIF17 in other animals. Lc-kif17 mRNA was diffusely expressed in L. crocea tissues and was highly expressed in the testis, especially at stage IV testicular development. Immunofluorescence analysis revealed that Lc-KIF17 signals colocalized with β-tubulin signals and migrated from the perinuclear cytoplasm to the side of the nucleus where the tail forms during spermiogenesis. These findings revealed that KIF17 may be involved in L. crocea spermiogenesis. In particular, KIF17 may participate in spermatid remodeling by interacting with perinuclear microtubules during L. crocea spermiogenesis. Collectively, this study contributes to an improved understanding of the mechanism underlying L. crocea spermiogenesis and provides a basis for further research on L. crocea reproduction and development.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Zhao Liu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, People's Republic of China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
33
|
Yao M, Qu H, Han Y, Cheng CY, Xiao X. Kinesins in Mammalian Spermatogenesis and Germ Cell Transport. Front Cell Dev Biol 2022; 10:837542. [PMID: 35547823 PMCID: PMC9083010 DOI: 10.3389/fcell.2022.837542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian testes, the apical cytoplasm of each Sertoli cell holds up to several dozens of germ cells, especially spermatids that are transported up and down the seminiferous epithelium. The blood-testis barrier (BTB) established by neighboring Sertoli cells in the basal compartment restructures on a regular basis to allow preleptotene/leptotene spermatocytes to pass through. The timely transfer of germ cells and other cellular organelles such as residual bodies, phagosomes, and lysosomes across the epithelium to facilitate spermatogenesis is important and requires the microtubule-based cytoskeleton in Sertoli cells. Kinesins, a superfamily of the microtubule-dependent motor proteins, are abundantly and preferentially expressed in the testis, but their functions are poorly understood. This review summarizes recent findings on kinesins in mammalian spermatogenesis, highlighting their potential role in germ cell traversing through the BTB and the remodeling of Sertoli cell-spermatid junctions to advance spermatid transport. The possibility of kinesins acting as a mediator and/or synchronizer for cell cycle progression, germ cell transit, and junctional rearrangement and turnover is also discussed. We mostly cover findings in rodents, but we also make special remarks regarding humans. We anticipate that this information will provide a framework for future research in the field.
Collapse
Affiliation(s)
- Mingxia Yao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
34
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
35
|
Ereskovsky A, Tokina D. Ultrastructural research of spermiogenesis in two sponges, Crellomima imparidens and Hymedesmia irregularis (Demospongiae): New evidence of sperms with acrosome in sponges. J Morphol 2022; 283:333-345. [PMID: 34997986 DOI: 10.1002/jmor.21446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Details of spermatogenesis and sperm organization are often useful for reconstructing the phylogeny of closely related taxa of invertebrates. Here, the spermiogenesis and the ultrastructure of sperm were studied in two marine demosponges, Crellomima imparidens and Hymedesmia irregularis (order Poecilosclerida). In C. imparidens and H. irregularis, we found bundles of microtubules arranged along the nucleus during spermiogenesis. These bundles derived from the basal body of axoneme, reaching the apical pole of the cell. In C. imparidens, the microtubules surround the nucleus, forming the manchette. In H. irregularis, the microtubules pass along only one side of the cell periphery. During spermiogenesis, the nucleus stretches and elongates. In both species, the nucleus is twisted into a spiral structure. We suppose that the manchette of microtubules could be responsible for controlling the elongation and shaping of the sperm nucleus to a helical form and for the twisting and/or condensation of chromatin in these sponges. The spermatozoon of both species has an elongated shape. Its apical part has an acrosome, which is dome-shaped in C. imparidens and flattened and lenticular in H. irregularis. The cytoplasm of the spermatozoa contains some small mitochondria, and proximal and distal centrioles arranged at an angle to each other. There is a small volume of residual cytoplasm with dark glycogen-like granules. The axoneme of the spermatid and the flagellum of the sperm of both sponges is located in the deep tunnel-like cytoplasmic depression. The comparison of spermatozoa morphology of different species of the order Poecilosclerida demonstrates that the knowledge of variation within genera and families can give valuable insights into the significance of many characters proposed for phylogenetic studies of this order.
Collapse
Affiliation(s)
- Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France.,Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Daria Tokina
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
36
|
Hiradate Y, Harima R, Yanai R, Hara K, Nagasawa K, Osada M, Kobayashi T, Matsuyama M, Kanno S, Yasui A, Tanemura K. Loss of Axdnd1 causes sterility due to impaired spermatid differentiation in mice. Reprod Med Biol 2022; 21:e12452. [PMID: 35386379 PMCID: PMC8968163 DOI: 10.1002/rmb2.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Spermiogenesis, the process of deformation of sperm head morphology and flagella formation, is a phenomenon unique to sperm. Axonemal dynein light chain proteins are localized to sperm flagella and are known to be involved in sperm motility. Here, we focused on the gene axonemal dynein light chain domain containing 1 (Axdnd1) with the aim to determine the function of its protein product AXDND1. Methods To elucidate the role of AXDND1 in spermatogenesis, we generated Axdnd1 knockout (KO) mice using the CRISPR/Cas9 system. The generated mice were subjected to fertility tests and analyzed by immunohistochemistry. Result The Axdnd1 KO mouse exhibited sterility caused by impaired spermiogenesis during the elongation step as well as abnormal nuclear shaping and manchette, which are essential for spermiogenesis. Moreover, AXDND1 showed enriched testicular expression and was localized from the mid-pachytene spermatocytes to the early spermatids. Conclusion Axdnd1 is essential for spermatogenesis in the mouse testes. These findings improve our understanding of spermiogenesis and related defects. According to a recent report, deleterious heterozygous mutations in AXDND1 were found in non-obstructive azoospermia (NOA) patients. Therefore, Axdnd1 KO mice could be used as a model system for NOA, which will greatly contribute to future NOA treatment studies.
Collapse
Affiliation(s)
- Yuki Hiradate
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Ryua Harima
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Rin Yanai
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kazue Nagasawa
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Makoto Osada
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Tomoe Kobayashi
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Makoto Matsuyama
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Shin‐ichiro Kanno
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Akira Yasui
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
37
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
38
|
Bizkarguenaga M, Gomez-Santos L, Madrid JF, Sáez FJ, Alonso E. Zona Pellucida sperm-binding protein 3 receptor distribution during Gopc -/- globozoospermic spermatogenesis. Microsc Res Tech 2021; 85:1454-1464. [PMID: 34870349 DOI: 10.1002/jemt.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Globozoospermia is a type of teratozoospermia characterized by round morphology of the sperm head. Gopc-/- infertile globozoospermic murine model has failures during spermiogenesis, such as the incorrect biogenesis of the acrosome, disorganized acroplaxome and manchette, round nuclei and spiral flagella. In this study, Western blot, RT-PCR, immunohistochemistry and immunogold were done for the localization of the acrosome protein Zona Pellucida sperm-binding protein 3 receptor (ZP3R), also called sp56, in wild type and Gopc-/- mice testis. The ZP3R protein was located in the acrosome and pseudo-acrosome vesicles of wild type and Gopc-/- mice, respectively. Also, it is distributed through the cytoplasm of the haploid spermatids only. The incorrect spermiogenesis of Gopc-/- mice causes a deregulation in the expression of ZP3R in the globozoospermic spermatids. Our results suggest that although the lack of GOPC causes a failure during the transport of the pre-acrosomal vesicles, the acrosome protein ZP3R is localized in the acrosome and is distributed through the cytoplasm only during spermiogenesis. Furthermore, the failure in spermiogenesis does not impair the synthesis of ZP3R and its localization in the pre-acrosomal vesicles.
Collapse
Affiliation(s)
- Maider Bizkarguenaga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Gomez-Santos
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | - Francisco José Sáez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Alonso
- Department of Cell Biology and Histology, Faculty of Pharmacy University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
39
|
Li Y, Wang Y, Wen Y, Zhang T, Wang X, Jiang C, Zheng R, Zhou F, Chen D, Yang Y, Shen Y. Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects. Hum Reprod 2021; 37:152-177. [PMID: 34791246 DOI: 10.1093/humrep/deab229] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) and in vitro validation studies identify new causative genes associated with teratozoospermia, particularly for sperm head defect? SUMMARY ANSWER We investigated a core group of infertile patients, including 82 cases with unexplained abnormal sperm head and 67 individuals with multiple morphological abnormalities of the sperm flagella (MMAF), and revealed rare and novel deleterious gene variants correlated with morphological abnormalities of the sperm head or tail defects. WHAT IS KNOWN ALREADY Teratozoospermia is one of the most common factors causing male infertility. Owing to high phenotypic variability, currently known genetic causes of teratozoospermia can only explain a rather minor component for patients with anomalous sperm-head shapes, and the agents responsible for atypical sperm head shapes remain largely unknown. STUDY DESIGN, SIZE, DURATION We executed WES analysis of a Chinese cohort of patients (N = 149) with teratozoospermia to identify novel genetic causes particularly for defective sperm head. We also sought to reveal the influence of different abnormalities of sperm morphology on ICSI outcome. PARTICIPANTS/MATERIALS, SETTING, METHODS In this study, a cohort of 149 infertile men (82 with abnormal sperm head and 67 with MMAF) were recruited. We implemented WES on infertile patients and analyzed the negative effects of the mutations of candidate genes on their protein conformations and/or expression. We also investigated the candidate genes' spatiotemporal expression/localization during spermatogenesis in both humans and mice, and explored their interactions with proteins that are known to be involved in sperm development. We also compared the ICSI outcomes of the affected individuals with various aberrations in sperm morphology. MAIN RESULTS AND THE ROLE OF CHANCE We identified rare and deleterious variants of piwi like RNA-mediated gene silencing 4 (PIWIL4: 1/82 patients, 1.21%), coiled-coil and C2 domain containing 1B (CC2D1B: 1/82 patients, 1.21%), cyclin B3 (CCNB3: 1/82 patients, 1.21%), KIAA1210 (KIAA1210: 2/82 patients, 2.43%) and choline phosphotransferase 1 (CHPT1: 1/82 patients, 1.21%), which are novel correlates of morphological abnormalities of the sperm head; functional evidence supports roles for all of these genes in sperm head formation. The mutations of septin 12 (SEPTIN12: 2/82 patients, 2.43%) are suggested to be associated with acrosome defects. We additionally observed novel causative mutations of dynein axonemal heavy chain 2 (DNAH2: 1/67 patients, 1.49%), dynein axonemal heavy chain 10 (DNAH10: 1/67 patients, 1.49%) and dynein axonemal heavy chain 12 (DNAH12: 1/67 patients, 1.49%) in patients with MMAF, and revealed a significantly lower fertilization rate of the abnormal sperm-head group compared to the MMAF group following ICSI. Consequently, our study also suggests that the mutations of PIWIL4 and CC2D1B might be circumvented by ICSI to a degree, and that CHPT1 and KIAA1210 loss-of-function variants might be associated with failed ICSI treatment. LIMITATIONS, REASONS FOR CAUTION In this study, we discovered the relationship between the genotype and phenotype of the novel causative genes of sperm head deformities in humans. However, the molecular mechanism of the relevant genes involved in sperm head development needs to be further illuminated in future research. Furthermore, evidence should be provided using knockout/knock-in mouse models for additional confirmation of the roles of these novel genes in spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS This cohort study of 149 Chinese infertile men documents novel genetic factors involved in teratozoospermia, particularly in anomalous sperm head formation. For the first time, we suggest that SEPTIN12 is related to human acrosomal hypoplasia, and that CCNB3 is a novel causative gene for globozoospermia in humans. We also uncovered variants in two genes-KIAA1210 and CHPT1associated with acrosomal biogenesis in patients with small or absent acrosomes. Additionally, it is postulated that loss-of-function mutations of PIWIL4 and CC2D1B have a contribution to the abnormal sperm-head formation. Furthermore, we are first to demonstrate the influence of different sperm morphologies on ICSI outcomes and indicates that the abnormal sperm head may play a significant role in fertilization failure. Our findings therefore provide valuable information for the diagnosis of teratozoospermia, particularly with respect to abnormalities of the sperm head. This will allow clinicians to adopt the optimal treatment strategy and to develop personalized medicine directly targeting these effects. STUDY FUNDING/COMPETING INTEREST(S) This work was financed by the West China Second University Hospital of Sichuan University (KS369 and KL042). The authors declare that they do not have any conflicts of interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yuting Wen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Zheng
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Zhou
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daijuan Chen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Ma Q, Cao C, Zhuang C, Luo X, Li X, Wan H, Ye J, Chen F, Cui L, Zhang Y, Wen Y, Yuan S, Gui Y. AXDND1, a novel testis-enriched gene, is required for spermiogenesis and male fertility. Cell Death Discov 2021; 7:348. [PMID: 34759295 PMCID: PMC8580973 DOI: 10.1038/s41420-021-00738-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/14/2023] Open
Abstract
Spermiogenesis is a complex process depending on the sophisticated coordination of a myriad of testis-enriched gene regulations. The regulatory pathways that coordinate this process are not well understood, and we demonstrate here that AXDND1, as a novel testis-enriched gene is essential for spermiogenesis and male fertility. AXDND1 is exclusively expressed in the round and elongating spermatids in humans and mice. We identified two potentially deleterious mutations of AXDND1 unique to non‐obstructive azoospermia (NOA) patients through selected exonic sequencing. Importantly, Axdnd1 knockout males are sterile with reduced testis size caused by increased germ cell apoptosis and sloughing, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Axdnd1 mutated late spermatids showed head deformation, outer doublet microtubules deficiency in the axoneme, and loss of corresponding accessory structures, including outer dense fiber (ODF) and mitochondria sheath. These phenotypes were probably due to the perturbed behavior of the manchette, a dynamic structure where AXDND1 was localized. Our findings establish AXDND1 as a novel testis-enrich gene essential for spermiogenesis and male fertility probably by regulating the manchette dynamics, spermatid head shaping, sperm flagellum assembly.
Collapse
Affiliation(s)
- Qian Ma
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Congcong Cao
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Changshui Zhuang
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaomin Luo
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaofeng Li
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Huijuan Wan
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Jing Ye
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Fangfang Chen
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Lina Cui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, 518057, China. .,Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
41
|
Umer N, Arévalo L, Phadke S, Lohanadan K, Kirfel G, Sons D, Sofia D, Witke W, Schorle H. Loss of Profilin3 Impairs Spermiogenesis by Affecting Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial Organization. Front Cell Dev Biol 2021; 9:749559. [PMID: 34869336 PMCID: PMC8632698 DOI: 10.3389/fcell.2021.749559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome-manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3-/- males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3-/- sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3-/- sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3-/- testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3-ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3-/- testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.
Collapse
Affiliation(s)
- Naila Umer
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Sharang Phadke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Denise Sofia
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Li W, Huang Q, Zhang L, Liu H, Zhang D, Yuan S, Yap Y, Qu W, Shiang R, Song S, Hess RA, Zhang Z. A single amino acid mutation in the mouse MEIG1 protein disrupts a cargo transport system necessary for sperm formation. J Biol Chem 2021; 297:101312. [PMID: 34673028 PMCID: PMC8592874 DOI: 10.1016/j.jbc.2021.101312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022] Open
Abstract
Mammalian spermatogenesis is a highly coordinated process that requires cooperation between specific proteins to coordinate diverse biological functions. For example, mouse Parkin coregulated gene (PACRG) recruits meiosis-expressed gene 1 (MEIG1) to the manchette during normal spermiogenesis. Here we mutated Y68 of MEIG1 using the CRISPR/cas9 system and examined the biological and physiological consequences in mice. All homozygous mutant males examined were completely infertile, and sperm count was dramatically reduced. The few developed sperm were immotile and displayed multiple abnormalities. Histological staining showed impaired spermiogenesis in these mutant mice. Immunofluorescent staining further revealed that this mutant MEIG1 was still present in the cell body of spermatocytes, but also that more MEIG1 accumulated in the acrosome region of round spermatids. The mutant MEIG1 and a cargo protein of the MEIG1/PACRG complex, sperm-associated antigen 16L (SPAG16L), were no longer found to be present in the manchette; however, localization of the PACRG component was not changed in the mutants. These findings demonstrate that Y68 of MEIG1 is a key amino acid required for PACRG to recruit MEIG1 to the manchette to transport cargo proteins during sperm flagella formation. Given that MEIG1 and PACRG are conserved in humans, small molecules that block MEIG1/PACRG interaction are likely ideal targets for the development of male contraconception drugs.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Qian Huang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hong Liu
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - David Zhang
- School of Arts and Sciences, College of William and Mary, Williamsburg, Virginia, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Qu
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
43
|
Wu B, Gao H, Liu C, Li W. The coupling apparatus of the sperm head and tail†. Biol Reprod 2021; 102:988-998. [PMID: 31995163 DOI: 10.1093/biolre/ioaa016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 01/26/2020] [Indexed: 12/23/2022] Open
Abstract
A strong sperm head-tail coupling apparatus (HTCA) is needed to ensure the integrity of spermatozoa during their fierce competition to fertilize the egg. A lot of HTCA-specific components have evolved to strengthen the attachment of the tail to the implantation fossa at the sperm head. Defects in HTCA formation lead to acephalic spermatozoa syndrome and pathologies of some male infertility. Recent studies have provided insights into the pathogenic molecular mechanisms of acephalic spermatozoa syndrome. Here, we summarize the proteins involved in sperm neck development and focus on their roles in the formation of HTCA. In addition, we discuss the fine structures of the sperm neck in different species from an evolutionary view, highlighting the potential conservative mechanism of HTCA formation.
Collapse
Affiliation(s)
- Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Azhar M, Altaf S, Uddin I, Cheng J, Wu L, Tong X, Qin W, Bao J. Towards Post-Meiotic Sperm Production: Genetic Insight into Human Infertility from Mouse Models. Int J Biol Sci 2021; 17:2487-2503. [PMID: 34326689 PMCID: PMC8315030 DOI: 10.7150/ijbs.60384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Declined quality and quantity of sperm is currently the major cause of patients suffering from infertility. Male germ cell development is spatiotemporally regulated throughout the whole developmental process. While it has been known that exogenous factors, such as environmental exposure, diet and lifestyle, et al, play causative roles in male infertility, recent progress has revealed abundant genetic mutations tightly associated with defective male germline development. In mammals, male germ cells undergo dramatic morphological change (i.e., nuclear condensation) and chromatin remodeling during post-meiotic haploid germline development, a process termed spermiogenesis; However, the molecular machinery players and functional mechanisms have yet to be identified. To date, accumulated evidence suggests that disruption in any step of haploid germline development is likely manifested as fertility issues with low sperm count, poor sperm motility, aberrant sperm morphology or combined. With the continually declined cost of next-generation sequencing and recent progress of CRISPR/Cas9 technology, growing studies have revealed a vast number of disease-causing genetic variants associated with spermiogenic defects in both mice and humans, along with mechanistic insights partially attained and validated through genetically engineered mouse models (GEMMs). In this review, we mainly summarize genes that are functional at post-meiotic stage. Identification and characterization of deleterious genetic variants should aid in our understanding of germline development, and thereby further improve the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Muhammad Azhar
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Saba Altaf
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Islam Uddin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Jinbao Cheng
- The 901th hospital of Joint logistics support Force of PLA, Anhui, China
| | - Limin Wu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Xianhong Tong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| |
Collapse
|
45
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Wu B, Yu X, Liu C, Wang L, Huang T, Lu G, Chen ZJ, Li W, Liu H. Essential Role of CFAP53 in Sperm Flagellum Biogenesis. Front Cell Dev Biol 2021; 9:676910. [PMID: 34124066 PMCID: PMC8195676 DOI: 10.3389/fcell.2021.676910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
The sperm flagellum is essential for male fertility. Despite vigorous research progress toward understanding the pathogenesis of flagellum-related diseases, much remains unknown about the mechanisms underlying the flagellum biogenesis itself. Here, we show that the cilia and flagella associated protein 53 (Cfap53) gene is predominantly expressed in testes, and it is essential for sperm flagellum biogenesis. The knockout of this gene resulted in complete infertility in male mice but not in the females. CFAP53 localized to the manchette and sperm tail during spermiogenesis, the knockout of this gene impaired flagellum biogenesis. Furthermore, we identified two manchette and sperm tail-associated proteins that interacted with CFAP53 during spermiogenesis. Together, our results suggest that CFAP53 is an essential protein for sperm flagellum biogenesis, and its mutations might be associated with multiple morphological abnormalities of the flagella (MMAF).
Collapse
Affiliation(s)
- Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- Department of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Gang Lu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
47
|
Manfrevola F, Guillou F, Fasano S, Pierantoni R, Chianese R. LINCking the Nuclear Envelope to Sperm Architecture. Genes (Basel) 2021; 12:genes12050658. [PMID: 33925685 PMCID: PMC8145172 DOI: 10.3390/genes12050658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Florian Guillou
- PRC, CNRS, IFCE, INRAE, University of Tours, 37380 Nouzilly, France;
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
- Correspondence:
| |
Collapse
|
48
|
Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet 2021; 17:e1009485. [PMID: 33831001 PMCID: PMC8057611 DOI: 10.1371/journal.pgen.1009485] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
piRNAs are small non-coding RNAs required to maintain genome integrity and preserve RNA homeostasis during male gametogenesis. In murine adult testes, the highest levels of piRNAs are present in the pachytene stage of meiosis, but their mode of action and function remain incompletely understood. We previously reported that BTBD18 binds to 50 pachytene piRNA-producing loci. Here we show that spermatozoa in gene-edited mice lacking a BTBD18 targeted pachytene piRNA cluster on Chr18 have severe sperm head dysmorphology, poor motility, impaired acrosome exocytosis, zona pellucida penetration and are sterile. The mutant phenotype arises from aberrant formation of proacrosomal vesicles, distortion of the trans-Golgi network, and up-regulation of GOLGA2 transcripts and protein associated with acrosome dysgenesis. Collectively, our findings reveal central role of pachytene piRNAs in controlling spermiogenesis and male fertility.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
49
|
Wang YY, Ke CC, Chen YL, Lin YH, Yu IS, Ku WC, O’Bryan MK, Lin YH. Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice. PLoS Genet 2020; 16:e1009020. [PMID: 32976492 PMCID: PMC7549768 DOI: 10.1371/journal.pgen.1009020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Approximately 2-15% of couples experience infertility, and around half of these cases are attributed to male infertility. We previously identified TBC1D21 as a sterility-related RabGAP gene derived from infertile men. However, the in vivo function of TBC1D21 in male fertility remains unclear. Here, we show that loss of Tbc1d21 in mice resulted in male infertility, characterized by defects in sperm tail structure and diminished sperm motility. The mitochondria of the sperm-tail had an abnormal irregular arrangement, abnormal diameter, and structural defects. Moreover, the axoneme structure of sperm tails was severely disturbed. Several TBC1D21 interactors were selected via proteomic analysis and functional grouping. Two of the candidate interactors, a subunit protein of translocase in the outer membrane of mitochondria (TOMM20) and an inner arm component of the sperm tail axoneme (Dynein Heavy chain 7, DNAH7), confirmed in vivo physical co-localization with TBC1D21. In addition, TOMM20 and DNAH7 detached and dispersed outside the axoneme in Tbc1d21-deficient sperm, instead of aligning with the axoneme. From a clinical perspective, the transcript levels of TBC1D21 in sperm from teratozoospermia cases were significantly reduced when compared with those in normozoospermia. We concluded that TBC1D21 is critical for mitochondrial and axoneme development of mammalian sperm.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Chun Ke
- PhD Program in Nutrition & Food science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Urology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hua Lin
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Moira K. O’Bryan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
50
|
Tapia Contreras C, Hoyer-Fender S. The WD40-protein CFAP52/WDR16 is a centrosome/basal body protein and localizes to the manchette and the flagellum in male germ cells. Sci Rep 2020; 10:14240. [PMID: 32859975 PMCID: PMC7455747 DOI: 10.1038/s41598-020-71120-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Development of spermatozoa requires remodelling and formation of particular structures. In elongating spermatids, the transient microtubular manchette contributes to the formation of the head-tail coupling apparatus (HTCA) and the sperm tail. The HTCA derives from the centrosome in that the proximal centriole inserts into the nuclear indentation and the distal centriole gives rise to the sperm flagellum. Although impairments in the formation of HTCA and sperm tail cause male infertility their molecular constituents are only partially known. The WD40-protein CFAP52 is implicated in motile cilia, but its relevance for male germ cell differentiation is not known. Here we show that CFAP52 is widespread expressed and localizes to a subset of microtubular structures. In male germ cells, CFAP52 is a component of the transient manchette and the sperm tail. However, expression of Cfap52 is not restricted to motile cilia-bearing cells. In NIH3T3 cells, CFAP52 localizes to the centrosome, the basal body, and the mitotic spindle poles, but not to the primary cilium. Our results demonstrate that CFAP52 is not restricted to motile cilia but instead most likely functions in constituting the centrosome/basal body matrix and the sperm tail.
Collapse
Affiliation(s)
- Constanza Tapia Contreras
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-Von-Liebig-Weg11, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-Von-Liebig-Weg11, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|