1
|
Rosenbaum D, Reichelt J, Gudaitis S, Kühne S, Zielinski S, Loreth D, Blume L, Brand J, Vitzthum H, Sachs W, Lampert A, Seipold L, Voss M, Meyer-Schwesinger C, Saftig P. Regulation of podocyte surface proteins by the enzyme A Disintegrin And Metalloproteinase 10 (ADAM10). Kidney Int 2025:S0085-2538(25)00344-8. [PMID: 40339751 DOI: 10.1016/j.kint.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Podocytes are terminally differentiated cells of the kidney filtration barrier. Their network of interdigitating foot processes embraces the glomerular capillaries and are likely remodeled by cleavage of podocyte surface proteins. The metalloproteinase ADAM10 is a major regulator of such surface protein shedding and was recently implicated in the pathophysiology of antibody-mediated podocyte injury. METHODS Here, we studied the contribution of ADAM10 in podocyte biology in health and disease and analyzed prominently expressed and disease-relevant podocyte membrane proteins in detail. We used genetically deficient mice, ADAM 10 inhibited pig glomeruli, and various in vitro experimental systems where detailed biochemical and imaging techniques were performed. RESULTS We found that thrombospondin type 1 domain containing 7A (THSD7A) and phospholipase A2 receptor 1 (PLA2R1), both of which are primary membranous nephropathy antigens, accumulated upon ADAM10 inhibition/deficiency. Moreover, increased proteins levels of the foot process adhesion protein β-dystroglycan (β-DG) were found. Detailed biochemical analyses in different experimental systems revealed that THSD7A, PLA2R1, and β-DG are true ADAM10 substrates and subject to γ-secretase-mediated intramembrane proteolysis. These substrates co-localize and interact with the protease in podocytes and their shedding regulates filopodogenesis (THSD7A and β-DG) and cell matrix adhesion (β-DG). ADAM10 substrate usage, but also the stability of the podocyte cell surface proteins, are regulated by tetraspanin (Tspan) 15, which is likewise present at podocyte foot processes. A tricomponent complex of THSD7A/ADAM10/Tspan15 was found, with THSD7A acting as both an ADAM10 substrate and regulator. CONCLUSIONS Altogether, our data emphasizes the importance of ADAM10/Tspan15-mediated regulation of podocyte foot process surface proteins that serve as antigens in primary membranous nephropathy and impact cytoskeletal dynamics.
Collapse
Affiliation(s)
- David Rosenbaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Simonas Gudaitis
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Stine Kühne
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Helga Vitzthum
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Alina Lampert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany; Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Zee J, Hogan JJ, Abdullah A, Liu L, Kiryluk K, Beck LH. Noninvasive Diagnostic Strategies for Membranous Nephropathy in the Nephrotic Syndrome Study Network. Clin J Am Soc Nephrol 2025; 20:697-705. [PMID: 40019793 DOI: 10.2215/cjn.0000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Key Points
Antiphospholipase A2 receptor antibody seropositivity by ELISA ≥2 and positive indirect immunofluorescence was optimal.Noninvasive diagnosis of phospholipase A2 receptor–associated membranous nephropathy among patients with proteinuria is feasible using both assays.
Background
Clinical practice guidelines recommend that a kidney biopsy is no longer required to confirm a diagnosis of membranous nephropathy (MN) in patients with nephrotic syndrome and a positive test for antiphospholipase A2 receptor antibodies (PLA2R-Ab). However, the optimal diagnostic strategy for using the PLA2R-Ab ELISA, PLA2R-Ab indirect immunofluorescence (IIF) test, and genetic risk score (GRS) for diagnosing MN, including the tests' optimal thresholds for positivity among incident patients with proteinuria, is still unknown.
Methods
We used serum samples at or before the first clinically indicated kidney biopsy from participants in the Nephrotic Syndrome Study Network to analyze test performance characteristics using different combinations and cutoffs of the PLA2R-Ab ELISA, IIF, and GRS for diagnosing MN. Secondary analyses included serum samples within 6 months after biopsy but before any immunosuppression use.
Results
There were 325 study participants with serum samples available on or before the day of kidney biopsy and an additional 143 study participants with samples within 6 months after biopsy but before any immunosuppression use. Of these participants, 26% (n=85) had biopsy-confirmed MN. The combination of ELISA ≥2 RU/ml and positive IIF was the optimal approach, with sensitivity of 0.60, specificity of 1.00, negative predictive value of 0.92, and positive predictive value of 1.00. Using IIF to confirm only borderline ELISA titers between 2 and 20 RU/ml resulted in similar sensitivity but specificity of >0.99. In our multiethnic study sample, we did not find improved diagnostic performance with the addition of GRSs.
Conclusions
In the Nephrotic Syndrome Study Network cohort, combined PLA2R-Ab testing with ELISA and IIF provided optimal test characteristics in making a noninvasive diagnosis of MN before or soon after kidney biopsy, including in patients with subnephrotic proteinuria. Further studies in multiethnic populations are needed to assess whether genetic data can augment this approach.
Collapse
Affiliation(s)
- Jarcy Zee
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jonathan J Hogan
- Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Cabaletta Bio, Philadelphia, Pennsylvania
| | - Ahmed Abdullah
- Division of Nephrology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Lili Liu
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Laurence H Beck
- Division of Nephrology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
3
|
Blume L, Meyer-Schwesinger C. Autoantibodies in the Pathogenesis of Podocytopathies. J Am Soc Nephrol 2025; 36:336-338. [PMID: 39883526 PMCID: PMC11888953 DOI: 10.1681/asn.0000000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Affiliation(s)
- Lukas Blume
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Hamburg Center of Kidney Health, Hamburg, Germany
| | | |
Collapse
|
4
|
Kurts C, von Vietinghoff S, Krebs CF, Panzer U. Kidney immunology from pathophysiology to clinical translation. Nat Rev Immunol 2025:10.1038/s41577-025-01131-y. [PMID: 39885266 DOI: 10.1038/s41577-025-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Kidney diseases are widespread and represent a considerable medical, social and economic burden. However, there has been marked progress in understanding the immunological aspects of kidney disease. This includes the identification of distinct intrarenal immunological niches and characterization of kidney disease endotypes according to the underlying molecular immunopathology, as well as a better understanding of the pathological roles for T cells, mononuclear phagocytes and B cells and the renal elements they target. These insights have improved the diagnosis of kidney disease. Here, we discuss new developments in our understanding of kidney immunology, focusing on immune mechanisms of disease and their translational implications for the diagnosis and treatment of kidney disease. We also describe the immune-mediated crosstalk between the kidney and other organs that influences kidney disease and extrarenal inflammation.
Collapse
Affiliation(s)
- Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany.
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sibylle von Vietinghoff
- Nephrology Section, University Hospital Bonn, Medical Clinic and Polyclinic I, Bonn, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Nihei Y, Kitamura D. Pathogenesis of IgA nephropathy as a tissue-specific autoimmune disease. Int Immunol 2024; 37:75-81. [PMID: 39066568 DOI: 10.1093/intimm/dxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024] Open
Abstract
Glomerulonephritis (GN) is a group of heterogeneous immune-mediated kidney diseases that causes inflammation within the glomerulus. Autoantibodies (auto-Abs) are considered to be central effectors in the pathogenesis of several types of GN. Immunoglobulin A nephropathy (IgAN) is the most common GN worldwide and is characterized by the deposition of IgA in the glomerular mesangium of the kidneys, which is thought to be mediated by immune complexes containing non-specific IgA. However, we recently reported that IgA auto-Abs specific to mesangial cells (anti-mesangium IgA) were found in the sera of gddY mice, a spontaneous IgAN model, and patients with IgAN. We identified two autoantigens (β2-spectrin and CBX3) that are selectively expressed on the mesangial cell surface and targeted by anti-mesangial IgA. Our findings redefined IgAN as a tissue-specific autoimmune disease. Regarding the mechanisms of production of anti-mesangium IgA, studies using gddY mice have revealed that the production of anti-CBX3 IgA is induced by particular strains of commensal bacteria in the oral cavity, possibly through their molecular mimicry to CBX3. Here, we discuss a new concept of IgAN pathogenesis from the perspective of this disease as autoimmune GN caused by tissue-specific auto-Abs.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
6
|
Pan Y, Chen S, Wu L, Xing C, Mao H, Liang H, Yuan Y. Animal models of membranous nephropathy: more choices and higher similarity. Front Immunol 2024; 15:1412826. [PMID: 39497816 PMCID: PMC11532550 DOI: 10.3389/fimmu.2024.1412826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune glomerular disease in which PLA2R1 is the main autoantibody. It has become the most common cause of adult nephrotic syndrome, and about one-third of patients can progress to end-stage kidney disease, but its pathogenesis is still unclear. Animal models can be used as suitable tools to study the pathogenesis and treatment of MN. The previous Heymann nephritis rat model and C-BSA animal model are widely used to study the pathogenesis of MN. However, the lack of target antigen expression in podocytes of model animals (especially rodents) restricts the application. In recent years, researchers constructed animal models of antigen-specific MN, such as THSD7A, PLA2R1, which more truly simulate the pathogenesis and pathological features of MN and provide more choices for the follow-up researchers. When selecting these MN models, we need to consider many aspects, including cost, difficulty of model preparation, labor force, and whether the final model can answer the research questions. This review is to comprehensively evaluate the mechanism, advantages and disadvantages and feasibility of existing animal models, and provide new reference for the pathogenesis and treatment of MN.
Collapse
Affiliation(s)
- Ying Pan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hongwei Liang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Tomas NM. Therapeutic targets in membranous nephropathy: plasma cells and complement. Clin Kidney J 2024; 17:sfae243. [PMID: 39239361 PMCID: PMC11375337 DOI: 10.1093/ckj/sfae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease and the most common cause of nephrotic syndrome in adults. The discovery of phospholipase A2 receptor 1 (PLA2R1) as the first target antigen in patients with MN 15 years ago has led to a paradigm shift in the pathobiological understanding of this disease. Autoantibodies against PLA2R1 as well as thrombospondin type-1 domain-containing 7A, the second identified antigen in adults, were shown to be disease-causing and act through local activation of the complement system, primarily via the classical and lectin pathways. These findings indicate that both plasma cells, the main source of antibodies and autoantibodies, as well as the complement system, the main pathogenic effector mechanism in MN, are rational and pathogenesis-based treatment targets in MN. This review summarizes pathomechanistic and clinical evidence for and against plasma cell- and complement-targeted treatments in MN.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Feng Z, Guo FS, Wang Q, Wang M, Zhao MH, Cui Z, Lei X. Macrocarpal B blocks the binding between the phospholipase A2 receptor and its antibodies. Bioorg Med Chem 2024; 110:117793. [PMID: 38917622 DOI: 10.1016/j.bmc.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The pathogenic role of anti-phospholipase A2 receptor (PLA2R) antibodies in primary membranous nephropathy (MN) has been well-established. This study aimed to identify potential small-molecule inhibitors against the PLA2R-antibody interaction, offering potential therapeutic benefits. A comprehensive screening of over 4000 small-molecule compounds was conducted by ELISA to assess their inhibitory effects on the binding between the immobilized full-length extracellular PLA2R and its antibodies. The affinity of anti-PLA2R IgG from MN patients and the inhibitory efficacy of each compound were evaluated via surface plasmon resonance (SPR). Human podocyte injuries were analyzed using CCK-8 assay, wound healing assay, western blot analysis, and immunofluorescence, after exposure to MN plasma +/- blocking compound. Fifteen compounds were identified as potential inhibitors, demonstrating inhibition rates >20 % for the PLA2R-antibody interaction. Anti-PLA2R IgG exhibited a consistent affinity among patients (KD = 10-8 M). Macrocarpal B emerged as the most potent inhibitor, reducing the antigen-antibody interaction by nearly 30 % in a dose-dependent manner, comparable to the performance of the 31-mer peptide from the CysR domain. Macrocarpal B bound to the immobilized PLA2R with an affinity of 1.47 × 10-6 M, while showing no binding to anti-PLA2R IgG. Human podocytes exposed to MN plasma showed decreased podocin expression, impaired migration function, and reduced cell viability. Macrocarpal B inhibited the binding of anti-PLA2R IgG to podocytes and reduced the cellular injuries.
Collapse
Affiliation(s)
- Zixin Feng
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Fu-Sheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Miao Wang
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Gu Q, Wen Y, Cheng X, Qi Y, Cao X, Gao X, Mao X, Shang W, Wei L, Jia J, Yan T, Cai Z. Integrative profiling of untreated primary membranous nephropathy at the single-cell transcriptome level. Clin Kidney J 2024; 17:sfae168. [PMID: 39027416 PMCID: PMC11255483 DOI: 10.1093/ckj/sfae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Primary membranous nephropathy (PMN) is an autoimmune kidney disease. Despite the identification of certain autoantigens, the etiology and pathophysiology of PMN are still largely unknown. Methods Five patients with biopsy-proven PMN were enrolled in this study. Their blood, kidney and urine samples were collected respectively to profile cellular, molecular and immunological alterations by using single-cell RNA sequencing (scRNA-seq). Experimental verifications were also implemented in kidney tissue. Results In the peripheral blood mononuclear cell (PBMC) samples, portions of B cells and plasma cells were increased in PMN patients. Cell-cell communication analysis suggests that APRIL (a proliferation-inducing ligand from B cells) might be a potential molecule that regulates the activity of plasma cells. In the kidney samples, scRNA-seq analysis showed that the infiltration of T cells, as well as the myeloid cells, appears abundant compared with healthy controls, suggesting that immune cells are actively recruited to kidney. Furthermore, we observed an enhanced interaction between inflammatory cells and podocytes, which might contribute to kidney injury. Accordingly, scRNA-seq analysis of urinary samples is partially reminiscent of the kidney cell landscape, especially T cells and myeloid cells, suggesting monitoring urinary samples is a promising method to monitor PMN development. Additionally, integrative analysis across the blood, kidney and urine identified LTB, HERP1, ANXA1, IL1RN and ICAM1 as common regulators of PMN. Finally, immune repertoire in PBMC also showed an elevated diversity of clonal type, implying the existence of autoreactive T-cell receptor/B-cell receptor. Conclusion Our study comprehensively profiled the transcriptomic landscapes of blood, kidney and urine in patients with PMN using scRNA-seq. We depicted the alterations including cell compositions and cell-cell communication in PMN. These results offer important clues with regard to the diagnosis and pathogenesis of PMN and potential intervention of PMN progression.
Collapse
Affiliation(s)
- Qiuhua Gu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchen Wen
- National Key Laboratory of Experimental Hematology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xi Cheng
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Qi
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cao
- Department of Nephrology, Tianjin Medical University General Hospital-Airport Hospital, Tianjin, China
| | - Xiqian Gao
- Department of Nephrology, Tianjin Medical University General Hospital-Airport Hospital, Tianjin, China
| | - Xiaoming Mao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenya Shang
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Wei
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhigang Cai
- National Key Laboratory of Experimental Hematology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
| |
Collapse
|
10
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
11
|
Seifert L, Riecken K, Zahner G, Hambach J, Hagenstein J, Dubberke G, Huber TB, Koch-Nolte F, Fehse B, Tomas NM. An antigen-specific chimeric autoantibody receptor (CAAR) NK cell strategy for the elimination of anti-PLA2R1 and anti-THSD7A antibody-secreting cells. Kidney Int 2024; 105:886-889. [PMID: 38309682 DOI: 10.1016/j.kint.2024.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Larissa Seifert
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hagenstein
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Kistler AD, Salant DJ. Complement activation and effector pathways in membranous nephropathy. Kidney Int 2024; 105:473-483. [PMID: 38142037 DOI: 10.1016/j.kint.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 12/25/2023]
Abstract
Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.
Collapse
Affiliation(s)
- Andreas D Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, Spital Thurgau AG, Frauenfeld, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - David J Salant
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Tang X, Dai H, Hu Y, Liu W, Zhao Q, Jiang H, Feng Z, Zhang N, Rui H, Liu B. Experimental models for elderly patients with membranous nephropathy: Application and advancements. Exp Gerontol 2024; 185:112341. [PMID: 38042380 DOI: 10.1016/j.exger.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Membranous nephropathy (MN) occurs predominantly in middle-aged and elderly individuals and ranks among the most prevalent etiologies of elderly nephrotic syndrome. As an autoimmune glomerular disorder characterized by glomerular basement membrane thickening and immune complex deposition, conventional MN animal models, including the Heymann nephritis rat model and the c-BSA mouse model, have laid a foundation for MN pathogenesis research. However, differences in target antigens between rodents and humans have impeded this work. In recent years, researchers have created antigen-specific MN animal models, primarily centered on PLA2R1 and THSD7A, employing diverse techniques that provide innovative in vivo research platforms for MN. Furthermore, significant advancements have been made in the development of in vitro podocyte models relevant to MN. This review compiles recent antigen-specific MN animal models and podocyte models, elucidates their immune responses and pathological characteristics, and offers insights into the future of MN experimental model development. Our aim is to provide a comprehensive resource for research into the pathogenesis of MN and the development of targeted therapies for older patients with MN to prolong lifespan and improve quality of life.
Collapse
Affiliation(s)
- Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Haoran Dai
- Department of Nephrology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wenbin Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Beijing Institute of Chinese Medicine, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, Huber TB, Zahner G. Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int 2023; 104:916-928. [PMID: 37598854 DOI: 10.1016/j.kint.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
The phospholipase A2 receptor 1 (PLA2R1) is the major target antigen in patients with membranous nephropathy (MN), an antibody-mediated autoimmune glomerular disease. Investigation of MN pathogenesis has been hampered by the lack of reliable animal models. Here, we overcome this issue by generating a transgenic mouse line expressing a chimeric PLA2R1 (chPLA2R1) consisting of three human PLA2R1 domains (cysteine-rich, fibronectin type-II and CTLD1) and seven murine PLA2R1 domains (CTLD2-8) specifically in podocytes. Mice expressing the chPLA2R1 were healthy at birth and showed no major glomerular alterations when compared to mice with a wild-type PLA2R1 status. Upon active immunization with human PLA2R1 (hPLA2R1), chPLA2R1-positive mice developed anti-hPLA2R1 antibodies, a nephrotic syndrome, and all major histological features of MN, including granular deposition of mouse IgG and complement components in immunofluorescence and subepithelial electron-dense deposits and podocyte foot process effacement in electron microscopy. In order to investigate the role of the complement system in this model, we further crossed chPLA2R1-positive mice with mice lacking the central complement component C3 (C3-/- mice). Upon immunization with hPLA2R1, chPLA2R1-positive C3-/- mice had substantially less severe albuminuria and nephrotic syndrome when compared to chPLA2R1-positive mice with a wild-type C3 status. In conclusion, we introduce a novel active immunization model of PLA2R1-associated MN and demonstrate a pathogenic role of the complement system in this model.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Annabel Schnarre
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Koellner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Glassock RJ. Therapy of membranous nephropathy: quo vadis? Clin Kidney J 2023; 16:1432-1433. [PMID: 37664562 PMCID: PMC10468741 DOI: 10.1093/ckj/sfad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Richard J Glassock
- Emeritus Professor, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Carney EF. Experimental evidence for a pathogenic role of anti-PLA 2R1 antibodies in membranous nephropathy. Nat Rev Nephrol 2023; 19:213. [PMID: 36849739 DOI: 10.1038/s41581-023-00697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
17
|
Dantas M, Silva LBB, Pontes BTM, dos Reis MA, de Lima PSN, Moysés M. Membranous nephropathy. J Bras Nefrol 2023; 45:229-243. [PMID: 37527529 PMCID: PMC10627124 DOI: 10.1590/2175-8239-jbn-2023-0046en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 08/03/2023] Open
Abstract
Membranous nephropathy is a glomerulopathy, which main affected target is the podocyte, and has consequences on the glomerular basement membrane. It is more common in adults, especially over 50 years of age. The clinical presentation is nephrotic syndrome, but many cases can evolve with asymptomatic non-nephrotic proteinuria. The mechanism consists of the deposition of immune complexes in the subepithelial space of the glomerular capillary loop with subsequent activation of the complement system. Great advances in the identification of potential target antigens have occurred in the last twenty years, and the main one is the protein "M-type phospholipase-A2 receptor" (PLA2R) with the circulating anti-PLA2R antibody, which makes it possible to evaluate the activity and prognosis of this nephropathy. This route of injury corresponds to approximately 70% to 80% of cases of membranous nephropathy characterized as primary. In the last 10 years, several other potential target antigens have been identified. This review proposes to present clinical, etiopathogenic and therapeutic aspects of membranous nephropathy in a didactic manner, including cases that occur during kidney transplantation.
Collapse
Affiliation(s)
- Márcio Dantas
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Ribeirão Preto, SP, Brazil
| | | | | | - Marlene Antônia dos Reis
- Universidade Federal do Triângulo Mineiro, Patologia Geral, Centro
de Pesquisa em Rim, Uberaba, MG, Brazil
| | | | - Miguel Moysés
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|