1
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
2
|
Therapeutic potential of vitamin B 1 derivative benfotiamine from diabetes to COVID-19. Future Med Chem 2022; 14:809-826. [PMID: 35535731 DOI: 10.4155/fmc-2022-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Benfotiamine (S-benzoylthiamine-O-monophosphate), a unique, lipid-soluble derivative of thiamine, is the most potent allithiamine found in roasted garlic, as well as in other herbs of the genus Allium. In addition to potent antioxidative properties, benfotiamine has also been shown to be a strong anti-inflammatory agent with therapeutic significance to several pathological complications. Specifically, over the past decade or so, benfotiamine has been shown to prevent not only various secondary diabetic complications but also several inflammatory complications such as uveitis and endotoxemia. Recent studies also demonstrate that this compound could be used to prevent the symptoms associated with various infectious diseases such as HIV and COVID-19. In this review article, the authors discuss the significance of benfotiamine in the prevention of various pathological complications.
Collapse
|
3
|
Yu L, Chen Y, Xu Y, He T, Wei Y, He R. D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy. Aging (Albany NY) 2019; 11:4943-4969. [PMID: 31307014 PMCID: PMC6682534 DOI: 10.18632/aging.102089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 12/25/2022]
Abstract
Although many mechanisms have been proposed for diabetic encephalopathy in type 2 diabetes mellitus (T2DM), the risk factors for cognitive impairment in type 1 diabetes mellitus (T1DM) are less clear. Here, we show that streptozotocin (STZ)-induced T1DM rats showed cognitive impairment in both Y maze and Morris water maze assays, accompanied with D-ribose was significantly increased in blood and urine, in addition to D-glucose. Furthermore, advanced glycation end products (AGE), Tau hyperphosphorylation and neuronal death in the hippocampal CA4/DG region were detected in T1DM rats. The expression and activity of transketolase (TKT), an important enzyme in the pentose shunt, were decreased in the brain, indicating that TKT may be involved in D-ribose metabolism in T1DM. Support for these change was demonstrated by the activation of TKT with benfotiamine (BTMP) treatment. Decreased D-ribose levels but not D-glucose levels; markedly reduced AGE accumulation, Tau hyperphosphorylation, and neuronal death; and improved cognitive ability in T1DM rats were shown after BTMP administration. In clinical investigation, T1DM patients had high D-ribose levels in both urine and serum. Our work suggests that D-ribose is involved in the cognitive impairment in T1DM and may provide a potentially novel target for treating diabetic encephalopathy.
Collapse
Affiliation(s)
- Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yao Chen
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
| | - Yong Xu
- Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao He
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
- Alzheimer’s Disease Center, Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Li L, Shen N, Wang N, Wang W, Tang Q, Du X, Carrero JJ, Wang K, Deng Y, Li Z, Lin H, Wu T. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int 2018; 93:1384-1396. [DOI: 10.1016/j.kint.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/25/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
5
|
Klaus A, Baldensperger T, Fiedler R, Girndt M, Glomb MA. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1498-1508. [PMID: 29400466 DOI: 10.1021/acs.jafc.7b05472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, we investigated the role of transketolase (TK) in the modulation of glycolaldehyde driven Maillard reactions. In vitro experiments with recombinant human TK reduced glycolaldehyde and glyoxal induced carbonyl stress and thereby suppressed the formation of advanced glycation endproducts up to 70% due to the enzyme-catalyzed conversion of glycolaldehyde to erythrulose. This was further substantiated by the use of 13C-labeled compounds. For the first time, glycolaldehyde and other sugars involved in the TK reaction were quantified in vivo and compared to nondiabetic uremic patients undergoing hemodialysis. Quantitation revealed amounts of glycolaldehyde up to 2 μM and highlighted its crucial role in the formation of AGEs in vivo. In this context, a LC-MS2 method for the comprehensive detection of sedoheptulose-7-phosphate, fructose-6-phosphate, ribose-5-phosphate, erythrose-4-phosphate, erythrulose, and glycolaldehyde in whole blood, plasma, and red blood cells was established and validated based on derivatization with 1-naphthylamine and sodium cyanoborohydride.
Collapse
Affiliation(s)
- Alexander Klaus
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Tim Baldensperger
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| |
Collapse
|
6
|
Abstract
Peritoneal dialysis (PD) is a successfully used method for renal replacement therapy. However, long-term PD may be associated with peritoneal fibrosis and ultrafiltration failure. The key factors linked to their appearance are repeated episodes of inflammation associated with peritonitis and long-term exposure to bioincompatible PD fluids. Different strategies have been proposed to preserve the peritoneal membrane. This article reviews the functional and structural alterations related to PD and strategies whereby we may prevent them to preserve the peritoneal membrane. The use of new, more biocompatible, PD solutions is promising, although further morphologic studies in patients using these solutions are needed. Blockade of the renin-angiotensin-aldosterone system appears to be efficacious and strongly should be considered. Other agents have been proven in experimental studies, but most of them have not yet been tested appropriately in human beings.
Collapse
Affiliation(s)
- M Auxiliadora Bajo
- Home Dialysis Unit, Nephrology Department, La Paz University Hospital, Madrid, Spain.
| | - Gloria Del Peso
- University Autónoma of Madrid, Hospital La Paz Institute for Health Research, Spanish Renal Research Network, Reina Sofia Institute for Nephrology Research, Madrid, Spain
| | - Isaac Teitelbaum
- Home Dialysis Program, University of Colorado Hospital, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
7
|
Ustuner MA, Kaman D, Colakoglu N. Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin. Tissue Cell 2017; 49:691-696. [PMID: 29066103 DOI: 10.1016/j.tice.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats. METHODS Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM+CoQ10 and Group 5 as GM+BFT for 8days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed. RESULTS Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM+BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM+CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli. CONCLUSION The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.
Collapse
Affiliation(s)
| | - Dilara Kaman
- Department of Medical Biochemistry, Firat University School of Medicine, Elazığ, Turkey.
| | - Neriman Colakoglu
- Department of Histology and Embryology, Firat University School of Medicine, Elazığ, Turkey
| |
Collapse
|
8
|
Yang CY, Chau YP, Chen A, Lee OKS, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol 2017; 6:111-118. [PMID: 28540200 PMCID: PMC5424432 DOI: 10.5527/wjn.v6.i3.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of and leads to the cessation of PD therapy. Therefore, it is important to elucidate the pathogenesis of peritoneal fibrosis in order to design therapeutic strategies to prevent its occurrence. Peritoneal fibrosis is associated with a chronic inflammatory status as well as an elevated oxidative stress (OS) status. Beyond uremia per se, OS also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress. Therapy targeting the cannabinoid (CB) signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. We recently reported that the intra-peritoneal administration of CB receptor ligands, including CB1 receptor antagonists and CB2 receptor agonists, ameliorated dialysis-related peritoneal fibrosis. As targeting the CB signaling pathway has been reported to be beneficial in attenuating the processes of several chronic inflammatory diseases, we reviewed the interaction among the cannabinoid system, inflammation, and OS, through which clinicians ultimately aim to prolong the peritoneal survival of PD patients.
Collapse
|
9
|
Ito Y, Kinashi H, Katsuno T, Suzuki Y, Mizuno M. Peritonitis-induced peritoneal injury models for research in peritoneal dialysis review of infectious and non-infectious models. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0100-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Hirakawa Y, Inagi R. Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis. Int J Mol Sci 2017; 18:ijms18010174. [PMID: 28106734 PMCID: PMC5297806 DOI: 10.3390/ijms18010174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a major public health problem around the world. Because the kidney plays a role in reducing glycative stress, renal dysfunction results in increased glycative stress. In turn, glycative stress, especially that due to advanced glycated end products (AGEs) and their precursors such as reactive carbonyl compounds, exacerbates chronic kidney disease and is related to premature aging in chronic kidney disease, whether caused by diabetes mellitus or otherwise. Factors which hinder a sufficient reduction in glycative stress include the inhibition of anti-glycation enzymes (e.g., GLO-1), as well as pathogenically activated endoplasmic reticulum (ER) stress and hypoxia in the kidney. Promising strategies aimed at halting the vicious cycle between chronic kidney disease and increases in glycative stress include the suppression of AGE accumulation in the body and the enhancement of GLO-1 to strengthen the host defense machinery against glycative stress.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Inagi
- Division of Chronic Kidney Disease (CKD) Pathophysiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
11
|
Jankowska M, Lichodziejewska-Niemierko M, Rutkowski B, Dębska-Ślizień A, Małgorzewicz S. Water soluble vitamins and peritoneal dialysis - State of the art. Clin Nutr 2016; 36:1483-1489. [PMID: 28089619 DOI: 10.1016/j.clnu.2016.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/19/2023]
Abstract
This review presents the results of a systematic literature search concerning water soluble vitamins and peritoneal dialysis modality. We provide an overview of the data available on vitamin requirements, dietary intake, dialysis related losses, metabolism and the benefits of supplementation. We also summarise the current recommendations concerning the supplementation of vitamins in peritoneal dialysis and discuss the safety of an administration of vitamins in pharmacological doses.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | | - Bolesław Rutkowski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | |
Collapse
|
12
|
The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity. Kidney Int 2016; 90:396-403. [DOI: 10.1016/j.kint.2016.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/18/2016] [Accepted: 03/03/2016] [Indexed: 11/21/2022]
|
13
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
14
|
Kellow NJ, Coughlan MT. Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev 2015; 73:737-59. [PMID: 26377870 DOI: 10.1093/nutrit/nuv030] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) formed via the Maillard reaction during the thermal processing of food contributes to the flavor, color, and aroma of food. A proportion of food-derived AGEs and their precursors is intestinally absorbed and accumulates within cells and tissues. AGEs have been implicated in the pathogenesis of diabetes-related complications and several chronic diseases via interaction with the receptor for AGEs, which promotes the transcription of genes that control inflammation. The dicarbonyls, highly reactive intermediates of AGE formation, are also generated during food processing and may incite inflammatory responses through 1) the suppression of protective pathways, 2) the incretin axis, 3) the modulation of immune-mediated signaling, and 4) changes in gut microbiota profile and metabolite sensors. In animal models, restriction of dietary AGEs attenuates chronic low-grade inflammation, but current evidence from human studies is less clear. Here, the emerging relationship between excess dietary AGE consumption and inflammation is explored, the utility of dietary AGE restriction as a therapeutic strategy for the attenuation of chronic diseases is discussed, and possible avenues for future investigation are suggested.
Collapse
Affiliation(s)
- Nicole J Kellow
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Mallipattu SK, Uribarri J. Advanced glycation end product accumulation: a new enemy to target in chronic kidney disease? Curr Opin Nephrol Hypertens 2015; 23:547-54. [PMID: 25160075 DOI: 10.1097/mnh.0000000000000062] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The critical role of advanced glycation end products (AGEs) in the progression of chronic diseases and their complications has recently become more apparent. This review summarizes the recent contributions to the field of AGEs in chronic kidney disease (CKD). RECENT FINDINGS Over the past 3 decades, AGEs have been implicated in the progression of CKD, and specifically diabetic nephropathy. Although numerous in-vitro and in-vivo studies highlight the detrimental role of AGEs accumulation in tissue injury, few prospective human studies or clinical trials show that inhibiting this process ameliorates disease. Nonetheless, recent studies have focused on the novel mechanisms that contribute to end-organ injury as a result of AGEs accumulation, as well as novel targets of therapy in kidney disease. SUMMARY As the prevalence and the incidence of CKD rises in the United States, it is essential to identify therapeutic strategies that either delay the progression of CKD or improve mortality in this population. The focus of this review is on highlighting the recent studies that advance our current understanding of the mechanisms mediating AGEs-induced CKD progression, as well as novel treatment strategies that have the potential to abrogate this disease process. VIDEO ABSTRACT http://links.lww.com/CONH/A12.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- aDivision of Nephrology, Department of Medicine, Stony Brook University bDivision of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
16
|
Müller-Krebs S, Nissle K, Tsobaneli J, Zeier M, Kihm LP, Kender Z, Fleming T, Nawroth PP, Reiser J, Schwenger V. Effect of benfotiamine in podocyte damage induced by peritoneal dialysis fluid. Front Med (Lausanne) 2015; 2:10. [PMID: 25806370 PMCID: PMC4354337 DOI: 10.3389/fmed.2015.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/21/2015] [Indexed: 11/18/2022] Open
Abstract
Background: In peritoneal dialysis (PD), residual renal function (RRF) fundamentally contributes to improved quality of life and patient survival. High glucose and advanced glycation end-products (AGE) contribute locally to peritoneal and systemically to renal damage. Integrity of podocyte structure and function is of special importance to preserve RRF. Benfotiamine could counteract the glucose and AGE-mediated toxicity by blocking hyperglycemia-associated podocyte damage via the pentose-phosphate pathway. Methods: A human differentiated podocyte cell line was incubated with control solution (control), 2.5% glucose solution (glucose), and 2.5% peritoneal dialysis fluid (PDF) for 48 h either ±50 μM benfotiamine. Podocyte damage and potential benefit of benfotiamine were analyzed using immunofluorescence, western blot analysis, and a functional migration assay. For quantitation, a semiquantitative score was used. Results: When incubating podocytes with benfotiamine, glucose, and PDF-mediated damage was reduced, resulting in lower expression of AGE and intact podocin and ZO-1 localization. The reorganization of the actin cytoskeleton was restored in the presence of benfotiamine as functional podocyte motility reached control level. Decreased level of inflammation could be shown as well as reduced podocyte apoptosis. Conclusion: These data suggest that benfotiamine protects podocytes from glucose and PDF-mediated dysfunction and damage, in particular, with regard to cytoskeletal reorganization, motility, inflammation, and podocyte survival.
Collapse
Affiliation(s)
| | - Katharina Nissle
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Julia Tsobaneli
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Lars Philipp Kihm
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany ; Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Zoltan Kender
- 2nd Department of Medicine, Semmelweis University , Budapest , Hungary
| | - Thomas Fleming
- Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Peter Paul Nawroth
- Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center , Chicago, IL , USA
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
17
|
Farhat K, Stavenuiter AWD, Beelen RHJ, Ter Wee PM. Pharmacologic targets and peritoneal membrane remodeling. Perit Dial Int 2014; 34:114-23. [PMID: 24525599 DOI: 10.3747/pdi.2011.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with functional and structural changes of the peritoneal membrane, also known as peritoneal remodeling. The peritoneal membrane is affected by many endogenous and exogenous factors such as cytokines, PD fluids, and therapeutic interventions. Here, we present an overview of various studies that have investigated pharmacologic interventions aimed at regression of peritoneal damage and prolongation of PD treatment.
Collapse
Affiliation(s)
- Karima Farhat
- Department of Nephrology,1 VU University Medical Center, and Department of Molecular Cell Biology and Immunology,2 VU University, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
18
|
Wang J, Liu S, Li H, Sun J, Zhang S, Xu X, Liu Y, Wang Y, Miao L. A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol 2014; 47:209-15. [PMID: 25425436 DOI: 10.1007/s11255-014-0829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
This article reviews the available rodent models of peritoneal dialysis (PD) that have been developed over the past 20 years and the complications associated with their use. Although there are several methods used in different studies, the focus of this article is not to review or provide detailed summaries of these methods. Rather, this article reviews the most common methods of establishing a dialysis model in rodents, the assays used to observe function of the peritoneum in dialysis, and how these models are adapted to study peritonitis and peritoneal fibrosis. We compared the advantages and disadvantages of different methods, which should be helpful in studies of PD and may provide valuable data for further clinical studies.
Collapse
Affiliation(s)
- Ji Wang
- Department of Nephrology, Second Hospital of Jilin University, Ziqiang Street 218, Nanguan District, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gugliucci A, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:191-208. [PMID: 25039001 DOI: 10.1007/978-3-319-07320-0_14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic kidney disease (CKD) has been shown to be associated with high oxidative stress and cardiovascular disease. In this chapter our focus will be on the role of advanced glycation end products (AGE) and their receptor, RAGE in CKD progression and their role on cardiovascular complications. We provide a succinct, yet comprehensive summary of the current knowledge, the challenges and the future therapeutic avenues that are stemming out from novel recent findings. We first briefly review glycation and AGE formation and the role of the kidney in their metabolism. Next, we focus on the RAGE, its signaling and role in oxidative stress. We address the possible role of soluble RAGEs as decoys and the controversy regarding this issue. We then provide the latest information on the specific role of both AGE and RAGE in inflammation and perpetuation of kidney damage in diabetes and in CKD without diabetes, which is the main purpose of the review. Finally, we offer an update on new avenues to target the AGE-RAGE axis in CKD.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University-California, 1310 Club Drive, 94592, Vallejo, CA, USA,
| | | |
Collapse
|
20
|
Kihm LP, Müller-Krebs S, Holoch S, Schmuck S, Becker LE, Brownlee M, Zeier M, Fleming TH, Nawroth PP, Schwenger V. Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrol Dial Transplant 2014; 30:401-9. [PMID: 25387474 DOI: 10.1093/ndt/gfu346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is limited by peritoneal fibrosis and ultrafiltration failure. This is in part caused by the high concentration of glucose degradation products (GDPs) present in PD fluids (PDF) as a consequence of heat sterilization. Existing research in long-term PD has mainly dealt with the toxicity induced by GDPs and the development of therapeutic strategies to reduce the cellular burden of GDPs. Currently, there are few data regarding the potential role of detoxification systems of GDP in PD. In this study, the role of glyoxalase 1 (Glo1), the major detoxification pathway for dicarbonyl-derived GD such as methylglyoxal (MG) and glyoxal (Gx), was investigated in vivo using heterozygous knock-down mice for Glo1 (Glo1(-/+)). METHODS Wild-type (WT) and Glo1(-/+) mice were repeatedly treated with PDF containing low and high amounts of GDP, particularly with respect to the content of dicarbonyls. After 12 weeks of treatment with PDF, peritoneal damage and function were evaluated. RESULTS Glo1(-/+) mice treated with PDF showed increased formation of advanced glycation endproduct (AGE) when compared with WT mice, particularly the Gx-derived AGE, carboxymethyl-lysine. This was associated with increased inflammation, neovascularization, increased peritoneal fibrosis and impaired peritoneal function. CONCLUSIONS This study suggests a pivotal and underestimated role for Glo1 as a detoxifying enzyme in GDP-associated peritoneal toxicity in PD. The indirect and direct modulation of Glo1 may therefore offer a new therapeutic option in prevention of GDP-induced peritoneal damage in PD.
Collapse
Affiliation(s)
- Lars P Kihm
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Sandra Holoch
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Svenja Schmuck
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Luis E Becker
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Michael Brownlee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Onishi A, Akimoto T, Morishita Y, Hirahara I, Inoue M, Kusano E, Nagata D. Peritoneal fibrosis induced by intraperitoneal methylglyoxal injection: the role of concurrent renal dysfunction. Am J Nephrol 2014; 40:381-90. [PMID: 25358632 DOI: 10.1159/000368424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/16/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a serious pathophysiology of peritoneal dialysis (PD). An ongoing focus of research is the potential fibrogenic nature of methylglyoxal (MGO) in conventional PD fluid (PDF). The aim of the current study was to explore the effects of the uremic milieu on the promotion of PF by MGO using rats with adenine-induced renal failure (RF). METHODS Adenine-treated Sprague-Dawley rats were randomly assigned to receive continuous peritoneal injections of PDF with or without MGO for three weeks or were left untreated for the same duration. Rats without RF were also assigned to three groups. The peritoneal histology and expression levels of type I collagen, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (αSMA), Snail, matrix metalloproteinase-2 (MMP-2), advanced glycation end-products (AGEs) and the receptor for AGE (RAGE) were then analyzed. RESULTS Peritoneal treatment with 5 mM MGO accelerated the fibrous peritoneal thickening progression promoted by exposure to standard PDF in the rats with RF, but not in the rats with a normal renal function. Treatment with MGO significantly augmented the proliferation of mesenchymal-like mesothelial cells, accumulation of AGE, de novo expression of αSMA and RAGE and gene expression of type I collagen, TGF-β1, Snail and MMP-2, whereas both MGO and RF alone had, at most, marginal effects on the changes in these biological parameters. CONCLUSIONS In the present study, the adverse effects of MGO on the peritoneum became more prominent under conditions of a uremic milieu. These findings imply that MGO and uremia act cooperatively to induce PF.
Collapse
Affiliation(s)
- Akira Onishi
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Moll S, Meier M, Formentini I, Pomposiello S, Prunotto M. New renal drug development to face chronic renal disease. Expert Opin Drug Discov 2014; 9:1471-85. [DOI: 10.1517/17460441.2014.956075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Müller-Krebs S, Weber L, Tsobaneli J, Kihm LP, Reiser J, Zeier M, Schwenger V. Cellular effects of everolimus and sirolimus on podocytes. PLoS One 2013; 8:e80340. [PMID: 24260371 PMCID: PMC3829970 DOI: 10.1371/journal.pone.0080340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022] Open
Abstract
Everolimus (EVL) and Sirolimus (SRL) are potent immunosuppressant agents belonging to the group of mammalian target of rapamycin (mTOR) inhibitors used to prevent transplant rejection. However, some patients develop proteinuria following a switch from a calcineurin inhibitor regimen to mTOR inhibitors. Whether different mTOR inhibitors show similar effects on podocytes is still unknown. To analyze this, human podocytes were incubated with different doses of EVL and SRL. After incubation with EVL or SRL, podocytes revealed a reduced expression of total mTOR. Phosphorylation of p70S6K and Akt was diminished, whereas pAkt expression was more reduced in the SRL group. In both groups actin cytoskeletal reorganization was increased. Synaptopodin and podocin expression was reduced as well as nephrin protein, particularly in the SRL group. NFκB activation and IL-6 levels were lower in EVL and SRL, and even lower in SRL. Apoptosis was more increased in SRL than in the EVL group. Our data suggests that mTOR inhibitors affect podocyte integrity with respect to podocyte proteins, cytoskeleton, inflammation, and apoptosis. Our study is the first to analyze both mTOR inhibitors, EVL and SRL, in parallel in podocytes. Partially, the impact of EVL and SRL on podocytes differs. Nevertheless, it still remains unclear whether these differences are of relevance regarding to proteinuria in transplant patients.
Collapse
Affiliation(s)
- Sandra Müller-Krebs
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Lena Weber
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Julia Tsobaneli
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Lars P. Kihm
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 2013; 19:461-8. [PMID: 23462281 PMCID: PMC6493530 DOI: 10.1111/cns.12078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022] Open
Abstract
Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3β, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.
Collapse
Affiliation(s)
- Khanh V Q Luong
- Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA
| | | |
Collapse
|
25
|
Harisa GI. Benfotiamine enhances antioxidant defenses and protects against cisplatin-induced DNA damage in nephrotoxic rats. J Biochem Mol Toxicol 2013; 27:398-405. [PMID: 23716490 DOI: 10.1002/jbt.21501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/22/2013] [Accepted: 05/03/2013] [Indexed: 12/13/2022]
Abstract
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin-induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin-induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Are brain and heart tissue prone to the development of thiamine deficiency? Alcohol 2013; 47:215-21. [PMID: 23357554 DOI: 10.1016/j.alcohol.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 08/20/2012] [Accepted: 12/29/2012] [Indexed: 11/21/2022]
Abstract
Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine deficiency. We investigated these issues in a thiamine deficient animal model. Twenty-four male Lewis rats were fed a thiamine deficient diet, which contained 0.04% of normal thiamine intake. Six control rats were fed 200 μg of thiamine per day. Every week a group of six rats on the thiamine-deficient diet was sacrificed and blood, urine and tissue were stored. Blood and tissue transketolase activity, thiamine and thiamine metabolites were measured and PCR of thiamine transporter-1 (ThTr-1) was performed. Transketolase activity was significantly reduced in red blood cells, liver, lung, kidney and spleen tissue after two weeks of thiamine deficient diet. In brain tissue, transketolase activity was not reduced after up to four weeks of thiamine deficient diet. The amount of thiamine pyrophosphate was also significantly conserved in brain and heart tissue (decrease of 31% and 28% respectively), compared to other tissues (decrease of ~70%) after four weeks of thiamine deficient diet. There was no difference between tissues in ThTr-1 expression after four weeks of thiamine deficient diet. Despite the fact that the heart and the brain are predilection sites for complications from thiamine deficiency, these tissues are protected against thiamine deficiency. Other organs could be suffering from thiamine deficiency without resulting in clinical signs of classic thiamine deficiency in beriberi and Wernicke's encephalopathy.
Collapse
|
27
|
Pérez-Lozano ML, Sandoval P, Rynne-Vidal Á, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, Majano PL, Sánchez-Tomero JA, Selgas R, López-Cabrera M. Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One 2013; 8:e60776. [PMID: 23585849 PMCID: PMC3621952 DOI: 10.1371/journal.pone.0060776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.
Collapse
Affiliation(s)
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Abelardo Aguilera
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Pedro L. Majano
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Tomero
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología. Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
The role of thiamine in HIV infection. Int J Infect Dis 2012; 17:e221-7. [PMID: 23274124 DOI: 10.1016/j.ijid.2012.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/15/2022] Open
Abstract
Patients infected with HIV have a high prevalence of thiamine deficiency. Genetic studies have provided the opportunity to determine which proteins link thiamine to HIV pathology, i.e., renin-angiotensin system, poly(ADP-ribosyl) polymerase 1, Sp1 promoter gene, transcription factor p53, apoptotic factor caspase 3, and glycogen synthetase kinase 3β. Thiamine also affects HIV through non-genomic factors, i.e., matrix metalloproteinase, vascular endothelial growth factor, heme oxygenase 1, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide. In conclusion, thiamine may benefit HIV patients, but further investigation of the role of thiamine in HIV infection is needed.
Collapse
|
29
|
Abstract
Functional deterioration of the peritoneal membrane in patients on peritoneal dialysis has been described as being the result of a combination of neoangiogenesis and fibrosis. Glucose, glucose degradation products, and the unphysiological pH of the dialysate solution contribute to these changes. Although newer solutions clearly perform better in terms of their biocompatibility in an in vitro setting and in animal models, the benefit of such solutions over older solutions in the clinical setting is so far unproven. The difficulties in showing a benefit of the newer, more biocompatible solutions in the clinical setting can be explained by the fact that other factors also affect the properties of the peritoneal membrane. These factors are often neglected in clinical studies, which results in unnoticed differences in case-mix and blurs the potential impact of the novel solutions. However, many of these factors are modifiable, and attention should be paid to them in clinical practice to maintain the integrity of the peritoneal membrane. This Review focuses on factors that potentially influence the integrity of the peritoneal membrane, other than those associated with the peritoneal dialysis fluid itself.
Collapse
|
30
|
Mallipattu SK, He JC, Uribarri J. Role of advanced glycation endproducts and potential therapeutic interventions in dialysis patients. Semin Dial 2012; 25:529-38. [PMID: 22548330 DOI: 10.1111/j.1525-139x.2012.01081.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been nearly 100 years since the first published report of advanced glycation end products (AGEs) by the French chemist Maillard. Since then, our understanding of AGEs in diseased states has dramatically changed. Especially in the last 25 years, AGEs have been implicated in complications related to aging, neurodegenerative diseases, diabetes, and chronic kidney disease. Although AGE formation has been well characterized by both in vitro and in vivo studies, few prospective human studies exist demonstrating the role of AGEs in patients on chronic renal replacement therapy. As the prevalence of end-stage renal disease (ESRD) in the United States rises, it is essential to identify therapeutic strategies that either delay progression to ESRD or improve morbidity and mortality in this population. This article reviews the role of AGEs, especially those of dietary origin, in ESRD patients as well as potential therapeutic anti-AGE strategies in this population.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
31
|
Müller-Krebs S, Kihm LP, Madhusudhan T, Isermann B, Reiser J, Zeier M, Schwenger V. Human RAGE antibody protects against AGE-mediated podocyte dysfunction. Nephrol Dial Transplant 2012; 27:3129-36. [DOI: 10.1093/ndt/gfs005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Morishita Y, Watanabe M, Hirahara I, Akimoto T, Muto S, Kusano E. Level of 8-OHdG in drained dialysate appears to be a marker of peritoneal damage in peritoneal dialysis. Int J Nephrol Renovasc Dis 2011; 5:9-14. [PMID: 22334795 PMCID: PMC3278254 DOI: 10.2147/ijnrd.s27553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Peritoneal dialysis (PD) is a successful renal replacement therapy; however, long-term PD leads to structural and functional peritoneal damage. Therefore, the monitoring and estimation of peritoneal function are important in PD patients. Oxidative stress has been implicated as one possible mechanism of peritoneal membrane damage. The aim of this study was to evaluate the association between an oxidative stress marker, 8-hydroxydeoxyguanosine (8-OHdG), and peritoneal damage in PD patients. METHODS The authors evaluated 8-OHdG in drained dialysate by enzyme immunoassay to investigate the association between 8-OHdG and solute transport rate estimated by peritoneal equilibration test and matrix metalloproteinase-2 (MMP-2) level in 45 samples from 28 PD patients. RESULTS The 8-OHdG level was significantly correlated with dialysate:plasma creatine ratio (r = 0.463, P < 0.05) and significantly inversely correlated with D/D0 glucose (where D is the glucose level of peritoneal effluents obtained 4 hours after the injection and D0 is the glucose level obtained immediately after the injection) (r = -0.474, P < 0.05). The 8-OHdG level was also significantly correlated with MMP-2 level (r = 0.551, P < 0.05), but it was not correlated with the age of subjects, the duration of PD, or blood pressure. CONCLUSION The level of 8-OHdG in drained dialysate may be a useful novel marker of peritoneal damage in PD.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|