1
|
Toba K, Yamada A, Sasa K, Shirota T, Kamijo R. Expression of Kielin/chordin-like protein is regulated by BMP-2 in osteoblasts. Bone Rep 2024; 22:101793. [PMID: 39139593 PMCID: PMC11321374 DOI: 10.1016/j.bonr.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Bone morphogenetic protein (BMP), an osteoinductive factor, is a cytokine that induces osteoblast differentiation and mineralization, and expected to be applicable for hard tissue reconstruction. Kielin/chordin-like protein (Kcp), a member of the family of cysteine-rich proteins, enhances BMP signaling. The present study found that expression of Kcp in osteoblasts was induced by BMP-2 in a concentration- and time-dependent manner. Up-regulation of Kcp by BMP-2 was inhibited by Dorsomorphin, a SMAD signaling inhibitor. The involvement of up-regulation of Kcp by BMP-2 in induction of osteoblast differentiation by BMP-2 was also examined, which showed that suppression of Kcp expression by si Kcp partially inhibited induction of osteoblast differentiation and mineralization by BMP-2. Together, these results suggest that Kcp induced by BMP-2 functions to provide positive feedback for promotion of osteoblastic differentiation and mineralization by BMP-2 in osteoblasts.
Collapse
Affiliation(s)
- Kazuki Toba
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
2
|
Xu Y, Zheng Z, Pan H, Zhao M, Zhang J, Peng S, Liu J, Pan W, Yin Z, Xu S, Wei C, Qin JJ, Lin Y, Wan J, Wang M. Kielin/chordin-like protein deficiency aggravates pressure overload-induced cardiac dysfunction and remodeling via P53/P21/CCNB1 signaling in mice. FASEB J 2024; 38:e23513. [PMID: 38421300 DOI: 10.1096/fj.202301841r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.
Collapse
Affiliation(s)
- Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Soofi A, Li V, Beamish JA, Abdrabh S, Hamad M, Das NK, Shah YM, Dressler GR. Renal-specific loss of ferroportin disrupts iron homeostasis and attenuates recovery from acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F178-F188. [PMID: 37994409 PMCID: PMC11198972 DOI: 10.1152/ajprenal.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.
Collapse
Affiliation(s)
- Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Vivie Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey A Beamish
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Sham Abdrabh
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Liu W, Li F, Guo D, Du C, Zhao S, Li J, Yan Z, Hao J. Schisandrin B Alleviates Renal Tubular Cell Epithelial-Mesenchymal Transition and Mitochondrial Dysfunction by Kielin/Chordin-like Protein Upregulation via Akt Pathway Inactivation and Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase Pathway Activation in Diabetic Kidney Disease. Molecules 2023; 28:7851. [PMID: 38067580 PMCID: PMC10708382 DOI: 10.3390/molecules28237851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular cell (RTC) epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction in db/db mice, accompanied by the downregulation of TGF-β1 and the upregulation of PGC-1α. Similarly, Sch B demonstrated a protective effect by reducing the expression of TGF-β1, α-SMA, fibronectin, and Col I, meanwhile enhancing the expression of E-cadherin in human RTCs (HK2 cells) stimulated with high glucose. Moreover, under high glucose conditions, Sch B effectively increased mitochondrial membrane potential, lowered ROS production, and increased the ATP content in HK2 cells, accompanied by the upregulation of PGC-1α, TFAM, MFN1, and MFN2. Mechanistically, the RNA-seq results showed a significant increase in KCP mRNA levels in HK2 cells treated with Sch B in a high glucose culture. The influence of Sch B on KCP mRNA levels was confirmed by real-time PCR in high glucose-treated HK2 cells. Depletion of the KCP gene reversed the impact of Sch B on TGF-β1 and PGC-1α in HK2 cells with high glucose level exposure, whereas overexpression of the KCP gene blocked EMT and mitochondrial dysfunction. Furthermore, the PI3K/Akt pathway was inhibited and the AMPK pathway was activated in HK2 cells exposed to a high concentration of glucose after the Sch B treatment. Treatment with the PI3K/Akt pathway agonist insulin and the AMPK pathway antagonist compound C attenuated the Sch B-induced KCP expression in HK2 cells exposed to a high level of glucose. Finally, molecular autodock experiments illustrated that Sch B could bind to Akt and AMPK. In summary, our findings suggested that Sch B could alleviate RTC EMT and mitochondrial dysfunction by upregulating KCP via inhibiting the Akt pathway and activating the AMPK pathway in DKD.
Collapse
Affiliation(s)
- Weilin Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
- Department of Infectious Diseases, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Dongwei Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Congyuan Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Juan Li
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhe Yan
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
5
|
Ye D, Feng Y, Pan H, Lu X, Wang Z, Wang M, Liu J, Xu Y, Zhang J, Zhao M, Xu S, Ye J, Wan J. Kielin/chordin-like protein deficiency causes cardiac aging in male mice. J Mol Med (Berl) 2023; 101:731-742. [PMID: 37149518 DOI: 10.1007/s00109-023-02320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have demonstrated that bone morphogenetic proteins (BMPs) play important roles in cardiovascular diseases, including atherosclerosis, artery calcification, myocardial remodeling, pulmonary arterial hypertension, and diabetic cardiomyopathy. Kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of BMPs. However, the role of KCP in cardiac aging remains unknown. In this study, we aimed to investigate the role of KCP in cardiac aging and its possible mechanisms. Echocardiogram showed that heart function was impaired in aged mice (24 months). In addition, analysis of heart structure showed that KCP knockout (KO) aggravated cardiac remodeling in aged mice. Moreover, KCP KO increased p-smad2/3 and TGF-β expression, while decreased BMP-2 expression in aged mice. Furthermore, KCP KO increased the expression of cardiac senescence-related proteins in aged mice. KCP KO aggravated the imbalance of oxidants and antioxidants and increased the expression of proinflammatory cytokines and cardiomyocyte apoptosis in aged mice. Our study demonstrated that KCP KO aggravated cardiac aging in mice by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis. KEY MESSAGE: KCP KO aggravated aging-related cardiac dysfunction and remodeling in male mice. KCP KO aggravated cardiac aging by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
6
|
Bartik ZI, Sillén U, Djos A, Lindholm A, Fransson S. Whole exome sequencing identifies KIF26B, LIFR and LAMC1 mutations in familial vesicoureteral reflux. PLoS One 2022; 17:e0277524. [PMID: 36417404 PMCID: PMC9683562 DOI: 10.1371/journal.pone.0277524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.
Collapse
Affiliation(s)
- Zsuzsa I. Bartik
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Sillén
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindholm
- Department of Paediatrics, County Hospital Ryhov, Jönköping, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
7
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
8
|
Gao X, Han L, Yao X, Ma L. Gremlin1 and TGF-β1 protect kidney tubular epithelial cells from ischemia-reperfusion injury through different pathways. Int Urol Nephrol 2021; 54:1311-1321. [PMID: 34633599 DOI: 10.1007/s11255-021-03010-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gremlin1 belongs to the superfamily members of transforming growth factor (TGF)-β1, playing a profibrotic role in chronic kidney diseases (CKD) and the transition from the late stage of acute kidney injury (AKI) to CKD, but the effect it plays in the early stage of AKI is unclear. This study aimed to investigate the role of Gremlin1on apoptosis in renal tubular epithelial cells under ischemia-reperfusion (I/R) induction. METHODS We detected Gremlin1 and TGF-β1 expression in the kidneys of mice undergoing renal ischemia-reperfusion injury bilaterally. We induced apoptosis through depletion and reperfusion of oxygen and serum in human kidney tubular epithelial cells (HKCs), mimicking I/R injury in vivo, and detected the role and pathways of Gremlin1 and TGF-β1on HKCs injury. RESULTS Mice undergoing bilateral I/R surgery presented AKI with a significant increase in serum creatinine, obvious renal tubular injuries, and increased macrophage cell and T-cell infiltration in interstitial areas. Gremlin1 expression was significantly increased along with TGF-β1 in the kidneys of AKI mice compared to sham mice. Exogenous Gremlin1 inhibited I/R-induced caspase3 expression in HKCs, which was blocked by a VEGFR2 kinase inhibitor III (SU5416). TGF-β1 also inhibited I/R-induced cell apoptosis in HKCs but had no synergic effect with Gremlin1. The TGF-β1's inhibitory effect could be blocked by the TGF-β1 type I receptor (activin receptor-like kinase 5, and ALK5)-specific inhibitor SB431542. CONCLUSIONS Gremlin1 and TGF- β1 protect kidney tubular epithelial cells from ischemia-reperfusion-induced apoptosis through VEGFR2 and Smad2 signaling pathways.
Collapse
Affiliation(s)
- Xuxia Gao
- Department of General Internal Medicine, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Liyuan Han
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinbao Yao
- Department of Pharmaceutical Affairs, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liping Ma
- Department of General Internal Medicine, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
10
|
Sotiropoulos MG, Chitnis T. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The "Yin and Yang" of neuro-immune Signaling. J Neuroimmunol 2020; 347:577358. [PMID: 32795734 DOI: 10.1016/j.jneuroim.2020.577358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Bone Morphogenetic Proteins (BMP) and Transforming Growth Factor-beta (TGF-β) are cytokines with similar receptors and messengers. They are important for immune cell function, with BMPs exerting mainly proinflammatory but also anti-inflammatory effects, and TGF-β suppressing inflammation. Patients with Multiple Sclerosis exhibit BMP overactivity and suppressed TGF-β signaling. This dysregulated signaling participates in the crosstalk between infiltrating immune cells and glia, where BMP inhibits remyelination. Reciprocal antagonism between the two pathways takes place via a variety of mechanisms. Although this antagonism has not been studied in the setting of Multiple Sclerosis, it could inform further research and treatment discovery.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
12
|
Soofi A, Kutschat AP, Azam M, Laszczyk AM, Dressler GR. Regeneration after acute kidney injury requires PTIP-mediated epigenetic modifications. JCI Insight 2020; 5:130204. [PMID: 31917689 DOI: 10.1172/jci.insight.130204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/03/2020] [Indexed: 01/25/2023] Open
Abstract
A terminally differentiated cellular phenotype is thought to be maintained, at least in part, by both active and repressive histone marks. However, it is unclear whether regenerating cells after injury need to replicate such epigenetic marks to recover. To test whether renal epithelial cell regeneration is dependent on histone H3K4 methylation, we generated a mouse model that deleted the Paxip1 gene in mature renal proximal tubules. Paxip1 encodes PTIP, an essential protein in the Mll3/4 histone H3K4 methyltransferase complex. Mice with PTIP deletions in the adult kidney proximal tubules were viable and fertile. Upon acute kidney injury, such mice failed to regenerate damaged tubules, leading to scarring and interstitial fibrosis. The inability to repair damage was likely due to a failure to reenter mitosis and reactivate regulatory genes such as Sox9. PTIP deletion reduced histone H3K4 methylation in uninjured adult kidneys but did not significantly affect function or the expression of epithelial specific markers. Strikingly, cell lineage tracing revealed that surviving PTIP mutant cells could alter their phenotype and lose epithelial markers. These data demonstrate that PTIP and associated MLL3/4-mediated histone methylation are needed for regenerating proximal tubules and to maintain or reestablish the cellular epithelial phenotype.
Collapse
|
13
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
14
|
Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res 2019; 209:90-104. [PMID: 31085163 PMCID: PMC6850218 DOI: 10.1016/j.trsl.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the United States and the global burden of this disorder is increasing. Many affected individuals will progress to end stage kidney disease necessitating dialysis or transplantation. CKD is also a major independent contributor to the risk of cardiovascular morbidity and mortality. Tubulointerstitial fibrosis is a final common pathway for most causes of progressive CKD. Currently, there are no clinically available therapies targeting fibrosis that can slow the decline in kidney function. Although it has long been known that TGF-β signaling is a critical mediator of kidney fibrosis, translating this knowledge to the clinic has been challenging. In this review, we highlight some recent insights into the mechanisms of TGF-β signaling that target activation of this cytokine at the site of injury or selectively inhibit pro-fibrotic gene expression. Molecules directed at these targets hold the promise of attaining therapeutic efficacy while limiting toxicity seen with global inhibition of TGF-β. Kidney injury has profound epigenetic effects leading to altered expression of more than a thousand genes. We discuss how drugs targeting epigenetic modifications, some of which are in use for cancer therapy, have the potential to reprogram gene regulatory networks to favor adaptive repair and prevent fibrosis. The lack of reliable biomarkers of kidney fibrosis is a major limitation in designing clinical trials for testing CKD treatments. We conclude by reviewing recent advances in fibrosis biomarker development.
Collapse
Affiliation(s)
- Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri; VA St. Louis Health Care System, Saint Louis, Missouri.
| | - David Griggs
- Department of Molecular Microbiology and Immunology, Edward A. Doisy Research Center, Saint Louis University, Saint Louis, Missouri.
| |
Collapse
|
15
|
Non-coding RNA-Associated ceRNA Networks in a New Contrast-Induced Acute Kidney Injury Rat Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:102-112. [PMID: 31234008 PMCID: PMC6595412 DOI: 10.1016/j.omtn.2019.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a severe complication of intravascular applied radial contrast media, and recent progress in interventional therapy and angiography has revived interest in explaining detailed mechanisms and developing effective treatment. Recent studies have indicated a potential link between CI-AKI and microRNA (miRNA). However, the potential non-coding RNA-associated-competing endogenous RNA (ceRNA) pairs involved in CI-AKI still remain unclear. In this study, we systematically explored the circRNA or lncRNA-associated-ceRNA mechanism in a new rat model of CI-AKI through deep RNA sequencing. The results revealed that the expression of 38 circRNAs, 12 lncRNAs, 13 miRNAs and 127 mRNAs were significantly dysregulated. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses for mRNAs with significantly different expression and then constructed comprehensive circRNA or lncRNA-associated ceRNA networks in kidney of CI-AKI rats. Thereafter, two constructed ceRNA regulatory pathways in this CI-AKI rat model—novel_circ_0004153/rno-miR-144-3p/Gpnmb or Naglu and LNC_000343/rno-miR-1956-5p/KCP—were validated by real-time qPCR. This study is the first one to provide a systematic dissection of non-coding RNA-associated ceRNA profiling in kidney of CI-AKI rats. The selected non-coding RNA-associated ceRNA networks provide new insight for the underlying mechanism and may profoundly affect the diagnosis and therapy of CI-AKI.
Collapse
|
16
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
17
|
Bradford STJ, Ranghini EJ, Grimley E, Lee PH, Dressler GR. High-throughput screens for agonists of bone morphogenetic protein (BMP) signaling identify potent benzoxazole compounds. J Biol Chem 2019; 294:3125-3136. [PMID: 30602563 DOI: 10.1074/jbc.ra118.006817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is critical in renal development and disease. In animal models of chronic kidney disease (CKD), re-activation of BMP signaling is reported to be protective by promoting renal repair and regeneration. Clinical use of recombinant BMPs, however, requires harmful doses to achieve efficacy and is costly because of BMPs' complex synthesis. Therefore, alternative strategies are needed to harness the beneficial effects of BMP signaling in CKD. Key aspects of the BMP signaling pathway can be regulated by both extracellular and intracellular molecules. In particular, secreted proteins like noggin and chordin inhibit BMP activity, whereas kielin/chordin-like proteins (KCP) enhance it and attenuate kidney fibrosis or CKD. Clinical development of KCP, however, is precluded by its size and complexity. Therefore, we propose an alternative strategy to enhance BMP signaling by using small molecules, which are simpler to synthesize and more cost-effective. To address our objective, here we developed a small-molecule high-throughput screen (HTS) with human renal cells having an integrated luciferase construct highly responsive to BMPs. We demonstrate the activity of a potent benzoxazole compound, sb4, that rapidly stimulated BMP signaling in these cells. Activation of BMP signaling by sb4 increased the phosphorylation of key second messengers (SMAD-1/5/9) and also increased expression of direct target genes (inhibitors of DNA binding, Id1 and Id3) in canonical BMP signaling. Our results underscore the feasibility of utilizing HTS to identify compounds that mimic key downstream events of BMP signaling in renal cells and have yielded a lead BMP agonist.
Collapse
Affiliation(s)
- Shayna T J Bradford
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | | | - Edward Grimley
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | - Pil H Lee
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
18
|
SCUBE1-enhanced bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:329-338. [PMID: 30414502 DOI: 10.1016/j.bbadis.2018.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
We previously reported that the membrane-bound SCUBE1 (signal peptide-CUB-epithelial growth factor domain-containing protein 1) forms a complex with bone morphogenetic protein 2 (BMP2) ligand and its receptors, thus acting as a BMP co-receptor to augment BMP signal activity. However, whether SCUBE1 can bind to and facilitate signaling activity of BMP7, a renal protective molecule for ischemia-reperfusion (I/R) insult, and contribute to the proliferation and repair of renal tubular cells after I/R remains largely unknown. In this study, we first showed that I/R-induced SCUBE1 was expressed in proximal tubular cells, which coincided with the expression of renoprotective BMP7. Molecular and biochemical analyses revealed that SCUBE1 directly binds to BMP7 and its receptors, functioning as a BMP co-receptor to promote BMP7 signaling. Furthermore, we used a new Scube1 deletion (Δ2) mouse strain to further elucidate the renal pathophysiological function of SCUBE1 after I/R injury. As compared with wild-type littermates, Δ2 mice showed severe renal histopathologic features (extensive loss of brush border, tubular necrosis, and tubular dilation) and increased inflammation (neutrophil infiltrate and induction of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-6) during the resolution of I/R damage. They also showed reduced BMP signaling (phosphorylated Smad1/5/8) along with decreased proliferation and increased apoptosis of renal tubular cells. Importantly, lentivirus-mediated overexpression of SCUBE1 enhanced BMP signaling and conferred a concomitant survival outcome for Δ2 proximal tubular epithelial cells after hypoxia-reoxygenation treatment. The protective BMP7 signaling may be facilitated by stress-inducible SCUBE1 after renal I/R, which suggests potential targeted approaches for acute kidney injury.
Collapse
|
19
|
Ye J, Wang Z, Wang M, Xu Y, Zeng T, Ye D, Liu J, Jiang H, Lin Y, Wan J. Increased kielin/chordin-like protein levels are associated with the severity of heart failure. Clin Chim Acta 2018; 486:381-386. [PMID: 30144436 DOI: 10.1016/j.cca.2018.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies demonstrated that the transforming growth factor (TGF) β superfamily, including TGF-βs and bone morphogenetic proteins (BMPs), plays important roles in cardiovascular diseases. The kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of TGF-βs and BMPs. However, the role of KCP during heart failure (HF) remains unknown. The present study aimed to investigate the cardiac expression of KCP in human failing hearts. METHODS The human failing heart samples from patients with dilated cardiomyopathy (DCM, n = 12) and ischemic cardiomyopathy (ICM, n = 12) were collected, and normal heart (n = 8) samples from unmatched donors were collected as controls. Collagen volume, KCP levels, and mRNA levels of several BMPs in left ventricles (LV) of all hearts were measured. RESULTS The KCP levels were significantly higher in human failing hearts than in normal hearts. KCP levels were positively associated with hypertrophy markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, KCP levels were also positively associated with left ventricular end-diastolic dimension (LVEDD), collagen Iα and collagen IIIα expression but were negatively associated with left ventricular ejection fraction (LVEF). Furthermore, increased TGF-β1, BMP2/4/6/10 and reduced BMP7 levels were observed, and positive correlations between KCP and TGF-β1 and negative correlation between KCP and BMP2/7 were found, but not for BMP4/6/10. CONCLUSIONS KCP was closely associated with heart failure. The regulation of BMP2/7 and TGF-β1 expression may be the possible mechanisms.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
20
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
21
|
He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017; 92:1071-1083. [PMID: 28890325 DOI: 10.1016/j.kint.2017.06.030] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected. Although AKI-to-CKD transition has been intensively studied, the information of AKI on CKD is very limited. Nonetheless, AKI, when occurring in patients with CKD, is known to be more severe and difficult to recover. CKD is associated with significant changes in cell signaling in kidney tissues, including the activation of transforming growth factor-β, p53, hypoxia-inducible factor, and major developmental pathways. At the cellular level, CKD is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These pathologic changes may contribute to the heightened sensitivity of, and nonrecovery from, AKI in patients with CKD.
Collapse
Affiliation(s)
- Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Jing Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Mixuan Yi
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeri A Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
22
|
Soofi A, Wolf KI, Emont MP, Qi N, Martinez-Santibanez G, Grimley E, Ostwani W, Dressler GR. The kielin/chordin-like protein (KCP) attenuates high-fat diet-induced obesity and metabolic syndrome in mice. J Biol Chem 2017; 292:9051-9062. [PMID: 28424263 DOI: 10.1074/jbc.m116.771428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/14/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity and its associated complications such as insulin resistance and non-alcoholic fatty liver disease are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissue differentiation. The kielin/chordin-like protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and activin signals while enhancing bone morphogenetic protein (BMP) signaling. However, KCP's effects on metabolism and obesity have not been studied in animal models. Therefore, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high-fat diet. KCP loss sensitized the mice to obesity and associated complications such as glucose intolerance and adipose tissue inflammation and fibrosis. In contrast, transgenic mice that expressed KCP in the kidney, liver, and adipose tissues were resistant to developing high-fat diet-induced obesity and had significantly reduced white adipose tissue. Moreover, KCP overexpression shifted the pattern of SMAD signaling in vivo, increasing the levels of phospho (P)-SMAD1 and decreasing P-SMAD3. Adipocytes in culture showed a cell-autonomous effect in response to added TGF-β1 or BMP7. Metabolic profiling indicated increased energy expenditure in KCP-overexpressing mice and reduced expenditure in the KCP mutants with no effect on food intake or activity. These findings demonstrate that shifting the TGF-β superfamily signaling with a secreted protein can alter the physiology and thermogenic properties of adipose tissue to reduce obesity even when mice are fed a high-fat diet.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Martinez-Santibanez
- Pediatrics and Communicable Diseases and Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109 and
| | | | - Wesam Ostwani
- the Department of Cardiovascular Science, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
23
|
Li C, Wu S, Yang Z, Zhang X, Zheng Q, Lin L, Niu Z, Li R, Cai Z, Li L. Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Res 2017; 27:590-593. [PMID: 27981968 PMCID: PMC5385607 DOI: 10.1038/cr.2016.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
- Chinese Academy of Sciences Protein Science core facility center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Jianlan Institute of Medicine, Beijing 100190, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Zhang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Qi Zheng
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ling Lin
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zexiong Niu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zhiming Cai
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, Guangdong 518000, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| |
Collapse
|
24
|
Folate nutrition and blood-brain barrier dysfunction. Curr Opin Biotechnol 2017; 44:146-152. [PMID: 28189938 DOI: 10.1016/j.copbio.2017.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/30/2023]
Abstract
Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity. The role of brain folate deficiency in neuropsychiatric disorders is reviewed, as well as emerging diagnostic and nutritional strategies to identify and address brain folate deficiency in blood-brain barrier dysfunction.
Collapse
|
25
|
Soofi A, Wolf KI, Ranghini EJ, Amin MA, Dressler GR. The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G587-G598. [PMID: 27514479 PMCID: PMC5142198 DOI: 10.1152/ajpgi.00165.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease and is increasing with the rising rate of obesity in the developed world. Signaling pathways known to influence the rate of lipid deposition in liver, known as hepatic steatosis, include the transforming growth factor (TGF) superfamily, which function through the SMAD second messengers. The kielin/chordin-like protein (KCP) is a large secreted protein that can enhance bone morphogenetic protein signaling while suppressing TGF-β signaling in cells and in genetically modified mice. In this report, we show that aging KCP mutant (Kcp-/-) mice are increasingly susceptible to developing hepatic steatosis and liver fibrosis. When young mice are put on a high-fat diet, Kcp-/- mice are also more susceptible to developing liver pathology, compared with their wild-type littermates. Furthermore, mice that express a Pepck-KCP transgene (KcpTg) in the liver are resistant to developing liver pathology even when fed a high-fat diet. Analyses of liver tissues reveal a significant reduction of P-Smad3, consistent with a role for KCP in suppressing TGF-β signaling. Transcriptome analyses show that livers from Kcp-/- mice fed a normal diet are more like wild-type livers from mice fed a high-fat diet. However, the KCP transgene can suppress many of the changes in liver gene expression that are due to a high-fat diet. These data demonstrate that shifting the TGF-β signaling paradigm with the secreted regulatory protein KCP can significantly alter the liver pathology in aging mice and in diet-induced NAFLD.
Collapse
Affiliation(s)
- Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Katherine I Wolf
- Department of Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Egon J Ranghini
- Department of Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Mohammad A Amin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
26
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
27
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
28
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
29
|
Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, Yanagita M. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis. J Am Soc Nephrol 2015; 27:2393-406. [PMID: 26701981 DOI: 10.1681/asn.2015060647] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/15/2015] [Indexed: 01/03/2023] Open
Abstract
AKI increases the risk of developing CKD, but the mechanisms linking AKI to CKD remain unclear. Because proximal tubule injury is the mainstay of AKI, we postulated that proximal tubule injury triggers features of CKD. We generated a novel mouse model to induce proximal tubule-specific adjustable injury by inducing the expression of diphtheria toxin (DT) receptor with variable prevalence in proximal tubules. Administration of high-dose DT in mice expressing the DT receptor consistently caused severe proximal tubule-specific injury associated with interstitial fibrosis and reduction of erythropoietin production. Mild proximal tubule injury from a single injection of low-dose DT triggered reversible fibrosis, whereas repeated mild injuries caused sustained interstitial fibrosis, inflammation, glomerulosclerosis, and atubular glomeruli. DT-induced proximal tubule-specific injury also triggered distal tubule injury. Furthermore, injured tubular cells cocultured with fibroblasts stimulated induction of extracellular matrix and inflammatory genes. These results support the existence of proximal-distal tubule crosstalk and crosstalk between tubular cells and fibroblasts. Overall, our data provide evidence that proximal tubule injury triggers several features of CKD and that the severity and frequency of proximal tubule injury determines the progression to CKD.
Collapse
Affiliation(s)
- Koji Takaori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jin Nakamura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirosuke Nakata
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Takase
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Nameta
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tadashi Yamamoto
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Aris N Economides
- Genome Engineering Technologies and Skeletal Diseases TFA Groups, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan; and
| | - Kumar Sharma
- Center for Renal Translational Medicine and Institute of Metabolomic Medicine, Department of Medicine, University of California San Diego, Veteran's Administration San Diego HealthCare System, La Jolla, California
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan;
| |
Collapse
|
30
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
31
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
32
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
33
|
Zeisberg M, Kalluri R. The Kielin/Chordin-Like Protein Checkpoint Constitutes a System of Checks and Balances in CKD. J Am Soc Nephrol 2013; 24:863-5. [DOI: 10.1681/asn.2013040412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|