1
|
Li H, Fu M, Wang L, Dai Y, Lv Z, Geng S. miR-4537 curtails ferroptosis by targeting MIOX in renal cell carcinoma. Transl Oncol 2025; 56:102401. [PMID: 40306150 PMCID: PMC12059673 DOI: 10.1016/j.tranon.2025.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
Ferroptosis, an iron-dependent mode of cell death, has gained prominence for its critical role in the advancement of various cancers, notably clear cell renal carcinoma (ccRCC). The intricacies of ferroptosis's involvement in ccRCC, however, remain largely undefined. This study aimed to dissect the contribution of ferroptosis to ccRCC by examining differentially expressed genes (DEGs) identified within the TCGA ccRCC database and ferroptosis driver genes catalogued in the FerrDb database (dedicates to ferroptosis regulators and ferroptosis-disease associations). We employed 786-O and ACHN ccRCC cell lines, alongside HK2 (human kidey-2) cells and HKC (human kidney cells), to confirm the expression of 9 shared genes. Among these, MIOX (myo-inositol oxygenase) emerged as significantly downregulated in ccRCC cells compared to HK2 and HKC cells. Subsequent survival analysis illuminated a positive correlation between MIOX expression and improved patient survival, underscoring its prognostic significance. Further investigations into MIOX regulation identified four miRNAs via TargetScan predictions, with miR-4537 significantly upregulated in ccRCC cell lines. Functional assays involving miR-4537 mimics and inhibitors, combined with ferroptosis inducers and inhibitors, elucidated its impact on ccRCC cell growth and ferroptosis modulation. The results revealed that miR-4537 expression was diminished following ferroptosis induction, and the miR-4537 inhibitor markedly curbing ccRCC cell proliferation by fostering ferroptosis, while the mimic exerted opposite effects. Mechanistically, miR-4537 targets the 3'-UTR of MIOX to manipulate its expression, ultimately inhibiting ferroptosis in ccRCC cells. Our research indicated that miR-4537 restrained ferroptosis by regulating MIOX in ccRCC, offering novel insights into the mechanisms of ferroptosis in cancer biology and highlighting latent therapeutic avenues for cancer treatment through ferroptosis modulation.
Collapse
Affiliation(s)
- Hui Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China.
| | - Mengyu Fu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Lingli Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Yanpeng Dai
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Zongxing Lv
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Shilin Geng
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Wang Y, Lu J, Lin B, Chen J, Lin F, Zheng Q, Xue X, Wei Y, Chen S, Xu N. Integrated analysis of MIOX gene in prognosis of clear-cell renal cell carcinoma. Cell Death Dis 2025; 16:368. [PMID: 40341358 PMCID: PMC12062366 DOI: 10.1038/s41419-025-07698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Clear-cell renal cell carcinoma (ccRCC) is a highly aggressive malignancy that originates in the kidney. It often exhibits a limited response or can be refractory to a wide range of anti-cancer therapies, including tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors. Ferroptosis is a form of oxidative, iron-dependent cell death characterized by lipid peroxidation. Targeting ferroptosis may offer a promising alternative therapeutic strategy for cancer cells that are resistant to existing treatments. The impact of ferroptosis-related genes on the prognosis of ccRCC patients is still not fully understood. In this study, we identified 30 differentially expressed ferroptosis-related genes in ccRCC samples compared to normal tissues using data from The Cancer Genome Atlas (TCGA). Lasso regression analyses, along with Kaplan-Meier analysis, were conducted to identify genes associated with prognosis. Based on scRNA-seq and spatial transcriptome analysis, we identified specificity of MIOX in ccRCC. Furthermore, MIOX demonstrated the highest significance, highlighting its independent prognostic value as a single gene in ccRCC. Our findings suggest that MIOX could serve as potential targets for therapeutic interventions in ccRCC.
Collapse
Affiliation(s)
- Yiqiu Wang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiayi Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiayin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qingshui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xueyi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaohao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Li B, Wang G, Zheng X, Liu M, Yang Y, Ren Y, Zhang Y, Liu Y, He Z, Ren J, Wan H, Cao W, Wang Y, Zhang X, Hou J. Exposure to deltamethrin leads to gill liver damage, oxidative stress, inflammation, and metabolic disorders of Japanese flounder ( Paralichthys olivaceus). FRONTIERS IN TOXICOLOGY 2025; 7:1560192. [PMID: 40309513 PMCID: PMC12041085 DOI: 10.3389/ftox.2025.1560192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Deltamethrin is a pyrethroid insecticide commonly used to kill animal parasites in aquaculture. However, increasing evidence suggests that deltamethrin affects the health of aquatic animals by causing tissue damage and even death. Methods In this study, the damage caused by deltamethrin to the gill and liver tissues, as well as its effects on oxidative stress and immune metabolism, were studied in Paralichthys olivaceus. Results We observed a positive correlation between the residual levels of deltamethrin (Del) and the exposure concentrations, with the highest residue detected in the 0.28 μg/L concentration group (0.0684 mg/kg at 7 days). Then, we observed different degrees of damage to the gill and liver tissues of the Paralichthys olivaceus, including swelling, apical fusion, shedding of gill secondary lamellae, liver cell necrosis, and nuclear vacuolization, by observing tissue sections. Lysozyme enzyme activity increased, whereas catalase and alkaline phosphatase enzyme activities decreased. The liver transcriptome results of the control and high-concentration (0.28 μg/L) groups showed that there were 697 differentially expressed genes, including 390 upregulated and 307 downregulated genes. These differentially expressed genes were significantly enriched in oxidation-reduction, ferroptosis, steroid biosynthesis, and apoptosis pathways. Discussion In summary, we found that deltamethrin induces oxidative stress and metabolic disorders in P. olivaceus and leads to inflammation. However, the fish body resists such damage through a complex regulatory network. These experimental results provide a theoretical reference for the safe use of deltamethrin in P. olivaceus.
Collapse
Affiliation(s)
- Bingbu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Guixing Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Xinyu Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Mingyang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yucong Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yuqin Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yitong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufeng Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhongwei He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jiangong Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Hailong Wan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Wei Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufen Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Xiaoyan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jilun Hou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| |
Collapse
|
4
|
Wang J, Li X, Geng J, Wang R, Ma G, Liu P. Identification of biomarkers and mechanism exploration of ferroptosis related genes regulated by m6A in type 2 diabetes mellitus. Hereditas 2025; 162:24. [PMID: 39966875 PMCID: PMC11834627 DOI: 10.1186/s41065-025-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE This study is aims to explore the role of ferroptosis genes regulated by N6-methyladenosine (m6A) in Type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS Firstly, differentially expressed m6A-FRGs (DEm6A-FRGs) were obtained by intersecting the differentially expressed genes (DEGs) and the m6A-related ferroptosis genes (m6A-FRGs). After enrichment analysis of DEm6A-FRGs, artificial neural network (ANN) and nomogram models were constructed using 4 biomarkers. Moreover, the gene set enrichment analysis of biomarkers was performed. Furthermore, the transcription factors (TF)-mRNA and competing endogenous RNAs (ceRNA) regulatory networks were constructed to reveal the potential regulation of biomarkers at molecular level. In addition, the targeted drugs of biomarkers were predicted, and the molecular docking was used to study the inter-molecular interactions between biomarkers and targeted drugs by "AutoDockvina". RESULTS Totals of 10 DEm6A-FRGs were obtained by intersecting the 402 DEGs and 299 m6A-FRGs. Moreover, the ANN model and nomogram model were constructed with 4 biomarkers including CDKN1A, MIOX, MYCN and CD82, among them, CDKN1A was the most important biomarker for forecasting T2DM. Notably, the function of extracellular matrix structural constituent was low expression in CD82 and MIOX, the function of mitochondrial protein-containing complex was high expression in CD82 and CDKN1A. Furthermore, TP63 could regulate CD82, CDKN1A and MIOX, GATA3 could regulate CD82, CDKN1A and MYCN at the same time. The ceRNA network was constructed with 4 mRNAs, 51 miRNAs and 37 lncRNAs, among them, XIST was a key lncRNA that associated with 12 miRNAs, which could influence CDKN1A. In addition, bisphenol A was associated with CD82 and MYCN, CGP 25608 was associated with CDKN1A and MIOX. CONCLUSION This study revealed the potential molecular mechanisms of m6A-related ferroptosis genes in T2DM, which could provide novel insights for the clinical diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Juan Geng
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China 704 Shengli Street, Yinchuan, 750004, Ningxia, China.
| | - Pan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Middle Road, Shiyan, Hubei, 442000, People's Republic of China.
| |
Collapse
|
5
|
Li P, Li D, Lu Y, Pan S, Cheng F, Li S, Zhang X, Huo J, Liu D, Liu Z. GSTT1/GSTM1 deficiency aggravated cisplatin-induced acute kidney injury via ROS-triggered ferroptosis. Front Immunol 2024; 15:1457230. [PMID: 39386217 PMCID: PMC11461197 DOI: 10.3389/fimmu.2024.1457230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Cisplatin is a widely used chemotherapeutic agent prescribed to treat solid tumors. However, its clinical application is limited because of cisplatin- induced nephrotoxicity. A known complication of cisplatin is acute kidney injury (AKI). Deletion polymorphisms of GSTM1 and GSTT1, members of the glutathione S-transferase family, are common in humans and are presumed to be associated with various kidney diseases. However, the specific roles and mechanisms of GSTM1 and GSTT1 in cisplatin induced AKI remain unclear. Methods To investigate the roles of GSTM1 and GSTT1 in cisplatin-induced AKI, we generated GSTM1 and GSTT1 knockout mice using CRISPR-Cas9 technology and assessed their kidney function under normal physiological conditions and cisplatin treatment. Using ELISA kits, we measured the levels of oxidative DNA and protein damage, along with MDA, SOD, GSH, and the GSH/GSSG ratio in wild-type and GSTM1/GSTT1 knockout mice following cisplatin treatment. Additionally, oxidative stress levels and the expression of ferroptosis-related proteins in kidney tissues were examined through Western blotting, qPCR, immunohistochemistry, and immunofluorescence techniques. Results Here, we found that GSTT1 and GSTM1 were downregulated in the renal tubular cells of AKI patients and cisplatin-treated mice. Compared with WT mice, Gstm1/Gstt1-DKO mice were phenotypically normal but developed more severe kidney dysfunction and exhibited increased ROS levels and severe ferroptosis after injecting cisplatin. Discussion Our study revealed that GSTM1 and GSTT1 can protect renal tubular cells against cisplatin-induced nephrotoxicity and ferroptosis, and genetic screening for GSTM1 and GSTT1 polymorphisms can help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Duopin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jinling Huo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
6
|
Omosule CL, Blair CJ, Herries E, Zaydman MA, Farnsworth C, Ladenson J, Dietzen DJ, Gaut JP. Clinical Utility of LC-MS/MS for Blood Myo-Inositol in Patients with Acute Kidney Injury and Chronic Kidney Disease. Clin Chem 2024; 70:1172-1181. [PMID: 39092926 DOI: 10.1093/clinchem/hvae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Diagnosing acute kidney injury (AKI) and chronic kidney disease (CKD) relies on creatinine, which lacks optimal diagnostic sensitivity. The kidney-specific proximal tubular enzyme myo-inositol oxygenase (MIOX) catalyzes the conversion of myo-inositol (MI) to D-glucuronic acid. We hypothesized that proximal tubular damage, which occurs in AKI and CKD, will decrease MIOX activity, causing MI accumulation. To explore this, we developed an LC-MS/MS assay to quantify plasma MI and assessed its potential in identifying AKI and CKD patients. METHODS MI was quantified in plasma from 3 patient cohorts [normal kidney function (n = 105), CKD (n = 94), and AKI (n = 54)]. The correlations between MI and creatinine were determined using Deming regression and Pearson correlation and the impact of age, sex, and ethnicity on MI concentrations was assessed. Receiver operating characteristic curve analysis was employed to evaluate MI diagnostic performance. RESULTS In volunteers with normal kidney function, the central 95th percentile range of plasma MI concentrations was 16.6 to 44.2 µM. Age, ethnicity, and sex showed minimal influence on MI. Patients with AKI and CKD exhibited higher median MI concentrations [71.1 (25th percentile: 38.2, 75th percentile: 115.4) and 102.4 (77, 139.5) µM], respectively. MI exhibited excellent sensitivity (98.9%) and specificity (100%) for diagnosing CKD. In patients with AKI, MI increased 32.9 (SD 16.8) h before creatinine. CONCLUSIONS This study unveils MI as a potential renal biomarker, notably elevated in plasma during AKI and CKD. Plasma MI rises 33 h prior to serum creatinine, enabling early AKI detection. Further validation and exploration of MI quantitation in kidney disease diagnosis is warranted.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Connor J Blair
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Elizabeth Herries
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark A Zaydman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher Farnsworth
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jack Ladenson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph P Gaut
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine (Nephrology), Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
8
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Xie YH, Wang L, Li ML, Gong ZC, Du J. Role of myo-inositol in acute kidney injury induced by cisplatin. Toxicology 2023; 499:153653. [PMID: 37863467 DOI: 10.1016/j.tox.2023.153653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
There is an increasing evidence suggesting that myo-inositol (MI) may be a renoprotective factor. Our previous study revealed that decreased MI concentrations and increased excretion are often observed in animal models of renal injury and in patients with nephropathy. However, the role of MI supplementation in renal injury remains unclear. In this study, we aimed to explore the role of MI in cisplatin-induced acute kidney injury (AKI). We established a model of acute kidney injury caused by cisplatin (CDDP). Male Kunming mice were randomly divided into six groups: Sham (normal saline), CDDP (15 mg/kg), + MI (150 mg/kg), + MI (300 mg/kg), + MI (600 mg/kg) and MI (600 mg/kg). Human renal tubular epithelial cell line HK-2 cells were likewise separated into six groups at random: Control (normal saline), CDDP (20 µM), + MI (200 µM), + MI (400 µM), + MI (800 µM) and MI (800 µM). After the model was established, renal function indexes were subsequently detected, and experiments such as pathological staining analysis and protein expression analysis were performed. Our results showed that cisplatin administration led to AKI and apoptosis in mice and HK-2 cells, accompanied by markedly increased levels of MIOX, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), whereas exogenous MI significantly attenuated kidney injury and HK-2 cell damage induced by cisplatin both in vivo and in vitro by inhibiting excessive apoptosis. Overall, our findings demonstrate that exogenous MI can reduce excessive apoptosis, thus playing a protective role in cisplatin-induced AKI, indicating that exogenous MI may be used as an adjunctive treatment modality in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Liang Li
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Huang S, Lin S, Zhou S, Huang Z, Li Y, Liu S, Liu R, Luo X, Li J, Yang J, Yuan Z. Soluble thrombomodulin alleviates Diquat-induced acute kidney injury by inhibiting the HMGB1/IκBα/NF-κB signalling pathway. Food Chem Toxicol 2023:113871. [PMID: 37277018 DOI: 10.1016/j.fct.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Our research aimed to investigate whether soluble thrombomodulin (sTM) relieved Diquat (DQ)-induced acute kidney injury (AKI) via HMGB1/IκBα/NF-κB signaling pathways. An AKI rat model was constructed using DQ. Pathological changes in renal tissue were detected by HE and Masson staining. Gene expression was determined using qRT-PCR, IHC, and western blotting. Cell activity and apoptosis were analysed using CCK-8 and Flow cytometry, respectively. An abnormal kidney structure was observed in DQ rats. The levels of blood urea nitrogen (BUN), creatinine (CRE), uric acid (UA), oxidative stress, and inflammatory responses in the DQ group increased on the 7th day but decreased on the 14th day, compared with the control group. Additionally, HMGB1, sTM, and NF-kappaB (NF-κB) expression had increased in the DQ group compared with the control group, while the IκKα and IκB-α levels had decreased. In addition, sTM relieved the damaging effects of diquat on renal tubular epithelial cell viability, apoptosis, and the inflammatory response. The levels of HMGB1, TM, and NF-κB mRNA and protein were significantly decreased in the DQ + sTM group compared with the DQ group. These findings indicated that sTM could relieve Diquat-induced AKI through HMGB1/IκBα/NF-κB signaling pathways, which provides a treatment strategy for Diquat-induced AKI.
Collapse
Affiliation(s)
- Shaofang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shirong Lin
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Zhou
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziyan Huang
- Medical College of Nanchang University, Nanchang, China
| | - Yang Li
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiwen Liu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Risheng Liu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xurui Luo
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Li
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jibin Yang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zheng Yuan
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Zhou W, Yu C, Long Y. Myo-inositol oxygenase (MIOX) accelerated inflammation in the model of infection-induced cardiac dysfunction by NLRP3 inflammasome. Immun Inflamm Dis 2023; 11:e829. [PMID: 37249295 PMCID: PMC10161780 DOI: 10.1002/iid3.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Cardiac dysfunction is an important component of multiple organ failure caused by sepsis, and an important cause of high mortality in patients with sepsis. Herein, we attempted to determine whether myo-inositol oxygenase (MIOX) has proinflammation enzyme in infection-induced cardiac dysfunction (IICD) and its underlying mechanism. METHODS Patients with IICD were collected by our hospital. A mouse model of IICD was induced into male db/db mice by cecal ligation and puncture (CLP). All mice were injected with 20 μL of LV-MIOX or LV-control short hairpin RNA using a 0.5-mL insulin syringe. On the second day, all mice were induced by CLP. H9C2 cell was also induced with lipopolysaccharide and adenosine triphosphate. Quantitative analysis of messenger RNAs (mRNAs) and gene microarray hybridization was used to analyze the mRNA expression levels. Enzyme-linked immunosorbent assay, immunofluorescence, and Western blot analysis were used to analyze the protein expression levels. RESULTS The serum expressions of MIOX mRNA level in patients with IICD were upregulated compared to normal healthy volunteers. MIOX promoted inflammation levels in the in vitro model of IICD. Si-MIOX inhibited inflammation levels in the in vitro model of IICD. MIOX accelerated inflammation and cardiac dysfunction in infection-induced mice. MIOX interacted with NLR family pyrin domain containing 3 (NLRP3) protein to reduce the degradation of NLRP3. The inhibition of MIOX reversed the effects of NLRP3 in the in vitro model of cardiac dysfunction. CONCLUSIONS Taken together, these findings demonstrate that MIOX accelerates inflammation in the model of IICD, which may be, at least in part, attributable to NLRP3 activity by the suppression of NLRP3 degradation in IICD.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Congyi Yu
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yiwen Long
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Overexpression of IFIT1 protects against LPS-induced acute lung injury via regulating CCL5-p65NF-κB signaling. Int Immunopharmacol 2023; 114:109485. [PMID: 36446235 DOI: 10.1016/j.intimp.2022.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is featured by intensive inflammatory responses causing significant morbidity and mortality. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), induced by interferon (IFN), has been discovered to modulate viral infection and cell apoptosis and inhibit the production of pro-inflammatory cytokines. However, it's role and mechanism in ALI remain unclear and need to be explored furtherly. Here, we discovered that IFIT1 decreased the expression of TNF-α, IL-1β and IL-6 in mouse-derived macrophage cells (MH-S) and alleviated apoptosis of murine lung epithelial cells (MLE-12) induced by MH-S cell supernatant, contributing to anti-inflammatory and antiapoptotic effects in vitro and in vivo. Moreover, RNA sequencing analysis (RNA-seq) showed that inflammatory chemokine CC motif chemokine ligand 5 (CCL5) partially eliminated the protective effects of IFIT1 and promoted the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 by CCL5-p65NF-κB signaling pathway. This study demonstrated that IFIT1 attenuated ALI-associated inflammation and cell apoptosis by regulating the CCL5-p65NF-κB signaling pathway. These findings are of great significance for the treatment of lung injury.
Collapse
|
14
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
15
|
Myo-Inositol Supplementation Alleviates Cisplatin-Induced Acute Kidney Injury via Inhibition of Ferroptosis. Cells 2022; 12:cells12010016. [PMID: 36611810 PMCID: PMC9818458 DOI: 10.3390/cells12010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol, a carbocyclic sugar, is believed to be relevant to renal pathobiology since the kidney is the major site for its catabolism. Its role in acute kidney injury (AKI) has not been fully investigated. Ferroptosis, a unique form of regulated cell death, is involved in various types of renal injuries. The relevance of myo-inositol with respect to the process of ferroptosis has not been explored either. Herein, our current exploratory studies revealed that supplementation of myo-inositol attenuates cisplatin-induced injury in cultured Boston University mouse proximal tubular (BUMPT) cells and renal tubules in vivo. Moreover, our studies unraveled that metabolic parameters pertaining to ferroptosis were disrupted in cisplatin-treated proximal tubular cells, which were seemingly remedied by the administration of myo-inositol. Mechanistically, we noted that cisplatin treatment led to the up-regulation of NOX4, a key enzyme relevant to ferroptosis, which was normalized by the administration of myo-inositol. Furthermore, we observed that changes in the NOX4 expression induced by cisplatin or myo-inositol were modulated by carboxy-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase. Taken together, our investigation suggests that myo-inositol promotes CHIP-mediated ubiquitination of NOX4 to decelerate the process of ferroptosis, leading to the amelioration of cisplatin-induced AKI.
Collapse
|
16
|
Wu Z, Li D, Tian D, Liu X, Wu Z. Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition. PLoS One 2022; 17:e0279010. [PMID: 36516169 PMCID: PMC9749971 DOI: 10.1371/journal.pone.0279010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) progression can be predicted by abnormalities in the tubulointerstitial lining, and their treatment may be useful for preventing the disease. DKD is a progressive disease that contributes to renal tubular cell death, but its underlying mechanisms remain unclear. Ferroptosis is a novel term linked to lipid hydroperoxidation, and it plays an important role in the pathogenesis of DKD. Overexpression of cyclooxygenase-2 (COX2), an enzyme of the proximal tubule, causes cellular redox damage in DKD. It remains unknown whether COX2 exacerbates tubular damage by accelerating ferroptosis in the kidneys of diabetic mice. HK-2 cells cultured in high glucose exhibited ferroptosis, which was inhibited by ferroptosis inhibitors. Additionally, alterations in the sensors of ferroptosis metabolism, such as glutathione peroxidase 4 (GPX4) activity, lipid hydroperoxidation, reduced glutathione (GSH) levels and changes in mitochondrial morphology, were observed in high glucose-cultured HK-2 cells. Diabetic mice manifested tubular injury and deranged renal physiological indices, which were mitigated by ferrostatin-1 (Fer-1). Importantly, these perturbations were ameliorated by downregulating COX2. In addition, the increased COX2 was observed to be elevated in the daibetic kindney. To explore the relevance of COX2 to ferroptosis, HK-2 cells that knocked down from COX2 exhibited decreased ferroptosis sensitivity under high glucose conditions. In RSL-3-treated HK-2 cells, ferroptosis was improved by downregulating COX2 by treatment with aspirin, which was confirmed in high glucose-cultured HK-2 cells. Furthermore, the ferroptosis changes were also suppressed by decreasing COX2 in diabetic mice treated with aspirin, which retarded DKD progression. In conclusion, our results demonstrated that ferroptosis in renal tubular cells contributes to DKD development and that diabetes-related ferroptosis was inhibited through the downregulation of COX2 by aspirin, thus retarding the progression of DKD. Our findings support a renoprotective mechanism by which aspirin inhibits COX2 activation, identify COX2 as a potential target of ferroptosis, and establish that ferroptosis in renal tubular cells is an integral process in the pathogenesis of DKD regulated by COX2 expression profiles.
Collapse
Affiliation(s)
- Ziyu Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Provincial Key Laboratory of Geriatric Disease, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Dan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Dingyuan Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xuejun Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- * E-mail: (XL); (ZW)
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- * E-mail: (XL); (ZW)
| |
Collapse
|
17
|
Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, Chen J, Pan S, Feng Q, Liu Z, Liu D. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol 2022; 13:1065867. [PMID: 36467031 PMCID: PMC9714487 DOI: 10.3389/fphar.2022.1065867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 09/16/2023] Open
Abstract
Acute kidney injury (AKI), one of the most prevalent clinical diseases with a high incidence rate worldwide, is characterized by a rapid deterioration of renal function and further triggers the accumulation of metabolic waste and toxins, leading to complications and dysfunction of other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic medications, and ischemia-reperfusion injury, contribute to the onset and progression of AKI. However, the detailed mechanism remains unclear. Ferroptosis, a recently identified mechanism of nonapoptotic cell death, is iron-dependent and caused by lipid peroxide accumulation in cells. A variety of studies have demonstrated that ferroptosis plays a significant role in AKI development, in contrast to other forms of cell death, such as apoptosis, necroptosis, and pyroptosis. In this review, we systemically summarized the definition, primary biochemical mechanisms, key regulators and associated pharmacological research progress of ferroptosis in AKI. We further discussed its therapeutic potential for the prevention of AKI, in the hope of providing a useful reference for further basic and clinical studies.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Rui Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jingfang Chen
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
18
|
Kakkanattu TJ, Kaur J, Nagesh V, Kundu M, Kamboj K, Kaur P, Sethi J, Kohli HS, Gupta KL, Ghosh A, Kumar V, Yadav AK, Jha V. Serum myo-inositol oxygenase levels at hospital discharge predict progression to chronic kidney disease in community-acquired acute kidney injury. Sci Rep 2022; 12:13225. [PMID: 35918463 PMCID: PMC9345942 DOI: 10.1038/s41598-022-17599-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) increases the risk of morbidity, mortality, and progression to chronic kidney disease (CKD). There are few data on the risk of CKD following community-acquired AKI (CA-AKI) and its predictors from developing countries. We evaluated the association of a panel of serum and urine biomarkers at the time of hospital discharge with 4-month renal outcome in CA-AKI. Patients of either sex, aged between 18 and 70 years, with no underlying CKD, and with CA-AKI were recruited at the time of discharge from hospital in this prospective observational study. Levels of serum and urine biomarkers were analyzed and association between these markers and development of CKD, defined as eGFR < 60 ml/min/1.73 m2 or dialysis dependence at 4 month after discharge, were analyzed using multivariate logistic regression analysis and penalized least absolute shrinkage and selection operator logistic regression. Out of a total 126 patients followed up for 4 months, 25 developed CKD. Those who developed CKD were older (p = 0.008), had higher serum creatinine (p < 0.001) and lower serum albumin (p = 0.001) at discharge. Adjusted logistic regression showed that each 10% increase in standardized serum myo-inositol oxygenase (MIOX) level increased the odds of progression to CKD by 13.5%. With 10% increase in standardized urine Neutrophil gelatinase-associated lipocalin (NGAL), serum creatinine and urine protein creatinine ratio (uPCR), increase in the odds of progression to CKD was 10.5%, 9.6% and 8%, respectively. Multivariable logistic model including serum MIOX, discharge serum creatinine and discharge uPCR, was able to predict the progression of CKD [AUC ROC 0.88; (95% CI 0.81, 0.95)]. High level serum MIOX levels at the time of discharge from hospital are associated with progression to CKD in patients with CA-AKI.
Collapse
Affiliation(s)
- Tom Jose Kakkanattu
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Jaskiran Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Vinod Nagesh
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Monica Kundu
- George Institute for Global Health, UNSW, New Delhi, India
| | - Kajal Kamboj
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Prabhjot Kaur
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Jasmine Sethi
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Harbir Singh Kohli
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Kishan Lal Gupta
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Arpita Ghosh
- George Institute for Global Health, UNSW, New Delhi, India
| | - Vivek Kumar
- Department of Nephrology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Institute Education and Research, Chandigarh, 160012, India.
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
Wang P, Liu D, Yan S, Liang Y, Cui J, Guo L, Ren S, Chen P. The Role of Ferroptosis in the Damage of Human Proximal Tubule Epithelial Cells Caused by Perfluorooctane Sulfonate. TOXICS 2022; 10:toxics10080436. [PMID: 36006114 PMCID: PMC9414058 DOI: 10.3390/toxics10080436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant and environmental endocrine disruptor that has been shown to be associated with the development of many diseases; it poses a considerable threat to the ecological environment and to human health. PFOS is known to cause damage to renal cells; however, studies of PFOS-induced ferroptosis in cells have not been reported. We used the CCK-8 method to detect cell viability, flow cytometry and immunofluorescence methods to detect ROS levels and Western blot to detect ferroptosis, endoplasmic reticulum stress, antioxidant and apoptosis-related proteins. In our study, we found that PFOS could induce the onset of ferroptosis in HK-2 cells with decreased GPx4 expression and elevated ACSL4 and FTH1 expression, which are hallmarks for the development of ferroptosis. In addition, PFOS-induced ferroptosis in HK-2 cells could be reversed by Fer-1. We also found that endoplasmic reticulum stress and its mediated apoptotic mechanism and P53-mediated antioxidant mechanism are involved in the toxic damage of cells by PFOS. In this paper, we demonstrated for the first time that PFOS can induce ferroptosis in HK-2 cells. In addition, we preliminarily explored other mechanisms of cytotoxic damage by PFOS, which provides a new idea to study the toxicity of PFOS as well as the damage to the kidney and its mechanism.
Collapse
Affiliation(s)
- Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Yujun Liang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Jiajing Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China;
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Peng Chen
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
- Correspondence:
| |
Collapse
|
20
|
Xia Y, Pan W, Xiao X, Zhou X, Gu W, Liu Y, Zhao Y, Li L, Zheng C, Liu J, Li M. MicroRNA-483-5p accentuates cisplatin-induced acute kidney injury by targeting GPX3. J Transl Med 2022; 102:589-601. [PMID: 35184139 DOI: 10.1038/s41374-022-00737-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
The ability of cisplatin (cis-diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted attention and concern for a long time, but the molecular mechanism of action for cisplatin is not clear. MicroRNA-483 is involved in several diseases, such as tumorigenesis and osteoarthritis, but its renal target and potential role in AKI are unknown. In this study, we explored the pathogenic role and underlying mechanism of miR-483-5p in cisplatin-induced AKI, using transgenic mice, clinical specimen, and in vitro cell line. We found that miR-483-5p was significantly upregulated by cisplatin in a cisplatin-induced mouse model, in serum samples of patients who received cisplatin therapy, and in NRK-52E cells. Overexpression of miR-483-5p in mouse kidneys by stereotactic renal injection of lentiviruses mediated miR-483-5p or generation of conditional miR-483-overexpressing transgenic mice accentuated cisplatin-induced AKI by increasing oxidative stress, promoting apoptosis, and inhibiting autophagy of tubular cells. Furthermore, our results revealed miR-483-5p directly targeted to GPX3, overexpression of which rescued cisplatin-induced AKI by inhibiting oxidative stress and apoptosis of tubular cells, but not by regulating autophagy. Collectively, miR-483-5p is upregulated by cisplatin and exacerbates cisplatin-induced AKI via negative regulation of GPX3 and contributing oxidative stress and tubular cell apoptosis. These findings reveal a pathogenic role for miR-483-5p in cisplatin-induced AKI and suggest a novel target for the diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Ying Xia
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Wenbin Pan
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Xiao Xiao
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Xuejuan Zhou
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Wenqing Gu
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Yaqin Liu
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Yanyan Zhao
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Lixia Li
- Department of Oncology, Southern Theater Command General Hospital of PLA, Guangzhou, PR China
| | - Chenghao Zheng
- School of Medicine, Shanghai JiaoTong University, Shanghai, PR China.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Ming Li
- Department of Cell biology, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
21
|
Lu Y, Agarwal A. Myo-inositol oxygenase in cadmium-induced kidney injury. Am J Physiol Renal Physiol 2022; 322:F470-F472. [PMID: 35285275 PMCID: PMC8977179 DOI: 10.1152/ajprenal.00045.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yan Lu
- 1Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- 1Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama,2Department of Veterans Affairs, Birmingham Veterans
Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
22
|
Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ 2022; 29:1850-1863. [PMID: 35338333 PMCID: PMC9433379 DOI: 10.1038/s41418-022-00970-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, a novel form of regulated cell death induced by iron-dependent lipid peroxidation, plays an essential role in the development and drug resistance of tumors. Long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the regulation of cell cycle, proliferation, apoptosis, and migration of tumor cells. However, the function and molecular mechanism of NEAT1 in regulating ferroptosis in tumors remain unclear. Here, we found that ferroptosis inducers erastin and RSL3 increased NEAT1 expression by promoting the binding of p53 to the NEAT1 promoter. Induced NEAT1 promoted the expression of MIOX by competitively binding to miR-362-3p. MIOX increased ROS production and decreased the intracellular levels of NADPH and GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis. Importantly, overexpression of NEAT1 increased the anti-tumor activity of erastin and RSL3 by enhancing ferroptosis both in vitro and in vivo. Collectively, these data suggest that NEAT1 plays a novel and indispensable role in ferroptosis by regulating miR-362-3p and MIOX. Considering the clinical findings that HCC patients are insensitive to chemotherapy and immunotherapy, ferroptosis induction may be a promising therapeutic strategy for HCC patients with high NEAT1 expression.
Collapse
|
23
|
Sharma I, Liao Y, Zheng X, Kanwar YS. Modulation of gentamicin-induced acute kidney injury by myo-inositol oxygenase via the ROS/ALOX-12/12-HETE/GPR31 signaling pathway. JCI Insight 2022; 7:155487. [PMID: 35315361 PMCID: PMC8986073 DOI: 10.1172/jci.insight.155487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
In this investigation, a potentially novel signaling pathway in gentamicin-induced acute kidney injury-worsened by overexpression of proximal tubular enzyme, myo-inositol oxygenase (MIOX)-was elucidated. WT, MIOX-transgenic (MIOX-Tg), and MIOX-KO mice were used. Gentamicin was administered to induce tubular injury. MIOX-Tg mice had severe tubular lesions associated with increased serum creatinine and proteinuria. Lesions were relatively mild, with no rise in serum creatinine and no albuminuria in MIOX-KO mice. Transfection of HK-2 cells with MIOX-pcDNA led to increased gentamicin-induced reactive oxygen species (ROS). Marked increase of ROS-mediated lipid hydroperoxidation was noted in MIOX-Tg mice, as assessed by 4-HNE staining. This was associated with increased expression of arachidonate 12-lipoxygenase (ALOX-12) and generation of 12-hydroxyeicosatetraenoic acid (12-HETE). In addition, notable monocyte/macrophage influx, upregulation of NF-κB and inflammatory cytokines, and apoptosis was observed in MIOX-Tg mice. Treatment of cells with ALOX-12 siRNA abolished gentamicin-mediated induction of cytokines and 12-HETE generation. HETE-12 treatment promoted this effect, along with upregulation of various signaling kinases and activation of GPCR31. Similarly, treatment of cells or mice with the ALOX-12 inhibitor ML355 attenuated inflammatory response, kinase signaling cascade, and albuminuria. Collectively, these studies highlight a potentially novel mechanism (i.e., the ROS/ALOX-12/12-HETE/GPR31 signaling axis) relevant to gentamicin-induced nephrotoxicity modulated by MIOX.
Collapse
|
24
|
Zheng X, Deng F, Sharma I, Kanwar YS. Myo-inositol oxygenase overexpression exacerbates cadmium-induced kidney injury via oxidant stress and necroptosis. Am J Physiol Renal Physiol 2022; 322:F344-F359. [PMID: 35100813 PMCID: PMC8897016 DOI: 10.1152/ajprenal.00460.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conceivably, like other forms of acute kidney injury, cadmium-induced renal injury may also be associated with oxidative stress and various forms of cell death, including necroptosis, a form of regulated necrosis-associated cell death. Myo-inositol oxygenase (MIOX), an enzyme localized in renal proximal tubules, regulates oxidative stress and programmed cell death in various forms of renal injuries. Herein, the role and potential mechanism(s) by which MIOX potentiates cadmium-induced renal tubular damage were investigated. Overexpression of MIOX exacerbated cadmium-induced cell death and proximal tubular injury in mice, whereas MIOX gene disruption attenuated cellular damage in vitro and in vivo. Furthermore, necroptosis was observed in the renal tubular compartment, and, more importantly, it was corroborated by inhibitor experiments with necrostatin-1 (Nec-1). Coadministration of Nec-1 dampened including receptor-interacting protein kinase (RIP)1/RIP3/mixed-lineage kinase domain-like signaling, which is relevant to the process of necroptosis. Interestingly, the necroptosis induced by cadmium in tubules was modulated by MIOX expression profile. Also, the increased reactive oxygen species generation and NADPH consumption were accelerated by MIOX overexpression, and they were mitigated by Nec-1 administration. These findings suggest that MIOX-potentiated redox injury and necroptosis are intricately involved in the pathogenesis of cadmium-induced nephropathy, and this may yield novel potential therapeutic targets for amelioration of cadmium-induced kidney injury.NEW & NOTEWORTHY This is a seminal article documenting the role of myo-inositol oxygenase (MIOX), a renal proximal tubule-specific enzyme, in the exacerbation of cadmium-induced acute kidney injury by perturbing redox balance and inducing necroptosis. MIOX gene disruption or administration of necrostatin-1 (a necroptosis inhibitor) diminished cadmium-induced renal damage, in both in vitro and in vivo systems, suggesting a therapeutic potential of MIOX to attenuate necroptosis and relevant signaling pathways in cadmium-induced renal injury.
Collapse
Affiliation(s)
- Xiaoping Zheng
- 1Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Fei Deng
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Isha Sharma
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S. Kanwar
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
25
|
Deng L, Xiao M, Wu A, He D, Huang S, Deng T, Xiao J, Chen X, Peng Y, Cao K. Se/Albumin Nanoparticles for Inhibition of Ferroptosis in Tubular Epithelial Cells during Acute Kidney Injury. ACS APPLIED NANO MATERIALS 2022; 5:227-236. [DOI: 10.1021/acsanm.1c02706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Anshan Wu
- Zhuzhou Hospital of Xiangya School of Medicine, Central South University, Zhuzhou 412007, China
| | - Dong He
- Department of Respiration, The Second People’s Hospital of Hunan Province, Changsha 410021, China
| | - Sanqian Huang
- Department of Pathology, Hunan Cancer Hospital, Changsha 410000, China
| | - Tanggang Deng
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jiawei Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
26
|
Lu L, Liu Q, Zhi L, Che X, Xiao B, Cui M, Yu M, Yang B, Zhang J, Zhang B. Establishment of a Ciliogenesis-Associated Signaling Model for Polycystic Kidney Disease. Kidney Blood Press Res 2021; 46:693-701. [PMID: 34469896 DOI: 10.1159/000517408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Polycystic kidney disease (PKD) represents the most prevalent inherited progressive kidney disorder in humans. Due to complexity of the genetic network behind the disease, the molecular mechanisms of PKD are still poorly understood yet. OBJECTIVES This study aimed to develop a ciliogenesis-associated gene network for PKD patients and comprehensively understand the molecular mechanisms underlying the disease. METHOD The potential hub genes were selected based on the differential expression analysis from the GEO database. Meanwhile, the primary hub genes were further elucidated by both in vivo and in vitro experiments. RESULTS In this study, we established a comprehensive differentially expressed genes profile (including GNAS, PI4KB, UMOD, SLC7A13, and MIOX) for PKD patients compared with the control specimen. At the same time, enrichment analysis was utilized to demonstrate that the G-protein-related signaling and cilia assembling signaling pathways were closely associated with PKD development. The further investigations of the interaction between 2 genes (GNAS and PI4KB) with in vivo and in vitro analyses revealed that PI4KB functioned as a downstream factor for GNAS and spontaneously activated the phosphorylation of Akt into p-Akt for ciliogenesis in PKD formation. The PI4KB depletion mutant zebrafish model displayed a PKD phenotype as well as absence of primary cilia in the kidney. CONCLUSIONS Collectively, our work discovered an innovative potential signaling pathway model for PKD formation, which provided a valuable insight for future study of the mechanism of this disease.
Collapse
Affiliation(s)
- Ling Lu
- Department of Nephrology, Tianjin First Central Hospital, Tianjin, China
| | - Qiuling Liu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Lei Zhi
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuchun Che
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Xiao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingxuan Cui
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Mingyu Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bo Zhang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Guan Y, Liang X, Ma Z, Hu H, Liu H, Miao Z, Linkermann A, Hellwege JN, Voight BF, Susztak K. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nat Commun 2021; 12:5078. [PMID: 34426578 PMCID: PMC8382756 DOI: 10.1038/s41467-021-25377-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified loci for kidney disease, but the causal variants, genes, and pathways remain unknown. Here we identify two kidney disease genes Dipeptidase 1 (DPEP1) and Charged Multivesicular Body Protein 1 A (CHMP1A) via the triangulation of kidney function GWAS, human kidney expression, and methylation quantitative trait loci. Using single-cell chromatin accessibility and genome editing, we fine map the region that controls the expression of both genes. Mouse genetic models demonstrate the causal roles of both genes in kidney disease. Cellular studies indicate that both Dpep1 and Chmp1a are important regulators of a single pathway, ferroptosis and lead to kidney disease development via altering cellular iron trafficking.
Collapse
Affiliation(s)
- Yuting Guan
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiujie Liang
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyuan Ma
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhen Miao
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Benjamin F Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Cao L, Chen E, Zhang H, Ba Y, Yan B, Li T, Yang J. Construction of a novel methylation-related prognostic model for colorectal cancer based on microsatellite status. J Cell Biochem 2021; 122:1781-1790. [PMID: 34397105 DOI: 10.1002/jcb.30131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
The present study aimed to construct a novel methylation-related prognostic model based on microsatellite status that may enhance the prognosis of colorectal cancer (CRC) from methylation and microsatellite status perspective. DNA methylation and mRNA expression data with clinical information were downloaded from The Cancer Genome Atlas (TCGA) data set. The samples were divided into microsatellite stability and microsatellite instability group, and CIBERSORT was used to assess the immune cell infiltration characteristics. After identifying the differentially methylated genes and differentially expression genes using R packages, the methylation-driven genes were further identified. Prognostic genes that were used to establish the methylation-related risk score model were generated by the univariate and multivariate Cox regression model. Finally, we established and evaluated the methylation-related prognostic model for CRC patients. A total of 69 MDGs were obtained and three of these genes (MIOX, TH, DKFZP434K028) were selected to construct the prognostic model. Patients in the low-risk score group had a conspicuously better overall survival than those in the high-risk score group (p < .0001). The area under the receiver operating characteristic curve for this model was 0.689 at 3 years, 0.674 at 4 years, and 0.658 at 5 years. The Wilcoxon test showed that higher risk score was associated with higher T stage (p = .01), N stages (p = .0028), metastasis (p = .013), and advanced pathological stage (p = .0013). However, the more instability of microsatellite status, the lower risk score of CRC patients (p = .0048). Our constructed methylation-related prognostic model based on microsatellite status presents potential significance in assessing recurrence risk stratification, tumor staging, and immunotherapy for CRC patients.
Collapse
Affiliation(s)
- Lichao Cao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Erfei Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hezi Zhang
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Ying Ba
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Bianbian Yan
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Tong Li
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jin Yang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
29
|
Xu Z, Zhang S, Nian F, Xu S. Identification of a glycolysis-related gene signature associated with clinical outcome for patients with lung squamous cell carcinoma. Cancer Med 2021; 10:4017-4029. [PMID: 33991070 PMCID: PMC8209576 DOI: 10.1002/cam4.3945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC), one of the main types of lung cancer, has caused a huge social burden. There has been no significant progress in its therapy in recent years, Resulting in a poor prognosis. This study aims to develop a glycolysis‐related gene signature to predict patients’ survival with LUSC and explore new therapeutic targets. Methods We obtained the mRNA expression and clinical information of 550 patients with LUSC from the Cancer Genome Atlas (TCGA) database. Glycolysis genes were identified by Gene Set Enrichment Analysis (GSEA). The glycolysis‐related gene signature was established using the Cox regression analysis. Results We developed five glycolysis‐related genes signature (HKDC1, AGL, ALDH7A1, SLC16A3, and MIOX) to calculate each patient's risk score. According to the risk score, patients were divided into high‐ and low‐risk groups and exhibited significant differences in overall survival (OS) between the two groups. The ROC curves showed that the AUC was 0.707 for the training cohort and 0.651 for the validation cohort. Additionally, the risk score was confirmed as an independent risk factor for LUSC patients by Cox regression analysis. Conclusion We built a gene signature to clarify the connection between glycolysis and LUSC. This model performs well in evaluating patients’ survival with LUSC and provides new biomarkers for targeted therapy.
Collapse
Affiliation(s)
- Ziming Xu
- Department of Thoracic Surgery, Wuxi 9th People's Hospital affiliated to Soochow University, Wuxi, Jiangsu, China.,Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiwei Zhang
- Department of Thoracic Surgery, Wuxi 9th People's Hospital affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Fulai Nian
- Department of Thoracic Surgery, Wuxi 9th People's Hospital affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Shangyu Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
30
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
31
|
Catalpol-Induced AMPK Activation Alleviates Cisplatin-Induced Nephrotoxicity through the Mitochondrial-Dependent Pathway without Compromising Its Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7467156. [PMID: 33510841 PMCID: PMC7826214 DOI: 10.1155/2021/7467156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/15/2020] [Accepted: 12/24/2020] [Indexed: 01/19/2023]
Abstract
Nephrotoxicity is a common complication of cisplatin chemotherapy and, thus, limits the clinical application of cisplatin. In this work, the effects of catalpol (CAT), a bioactive ingredient extracted from Rehmannia glutinosa, on cisplatin-induced nephrotoxicity and antitumor efficacy were comprehensively investigated. Specifically, the protective effect of CAT on cisplatin-induced injury was explored in mice and HK-2 cells. In vivo, CAT administration strikingly suppressed cisplatin-induced renal dysfunction, morphology damage, apoptosis, and inflammation. In vitro, CAT induced activation of adenosine 5′-monophosphate- (AMP-) activated protein kinase (AMPK), improved mitochondrial function, and decreased generation of cellular reactive oxygen species (ROS), leading to a reduction in inflammation and apoptosis, which ultimately protected from cisplatin-induced injury. However, the beneficial effects of CAT were mostly blocked by coincubation with compound C. Furthermore, molecular docking results indicated that CAT had a higher affinity for AMPK than other AMPK activators such as danthron, phenformin, and metformin. Importantly, CAT possessed the ability to reverse drug resistance without compromising the antitumor properties of cisplatin. These findings suggest that CAT exerts positive effects against cisplatin-induced renal injury through reversing drug resistance via the mitochondrial-dependent pathway without affecting the anticancer activity of cisplatin.
Collapse
|
32
|
Shen J, Wang W, Shao X, Wu J, Li S, Che X, Ni Z. Integrated Analysis of m6A Methylome in Cisplatin-Induced Acute Kidney Injury and Berberine Alleviation in Mouse. Front Genet 2020; 11:584460. [PMID: 33329722 PMCID: PMC7718005 DOI: 10.3389/fgene.2020.584460] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant modification known in mRNAs. It participates in a variety of physiological and pathological processes, such as metabolism, inflammation, and apoptosis. Aims To explore the mechanism of m6A in cisplatin-induced acute kidney injury (AKI) and berberine alleviation in mouse. Methods This study investigated the N6-methyladenosine (m6A) methylome of kidneys from three mouse groups: C57 mice (controls), those with CI-AKI (injury group, IG), and those pretreated with berberine (treatment group, TG). Methylated RNA Immunoprecipitation Next Generation Sequencing (MeRIP-seq) and RNA-seq were performed to identify the differences between the injury group and the control group (IvC) and between the treatment group and the injury group (TvI). Western blotting was performed to identify the protein levels of candidate genes. Results In IvC, differentially methylated genes (DMGs) were enriched in metabolic processes and cell death. In TvI, DMGs were enriched in tissue development. Several genes involved in important pathways related to CI-AKI showed opposite methylation and expression trends in the IvC and TvI comparisons. Conclusion m6A plays an important role in cisplatin induced AKI and berberine may alleviate this process.
Collapse
Affiliation(s)
- Jianxiao Shen
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanpeng Wang
- Department of Nephrology, Lianshui People's Hospital, Lianshui, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingkui Wu
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Li
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiajing Che
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Sharma I, Deng F, Kanwar YS. Modulation of Renal Injury by Variable Expression of Myo-Inositol Oxygenase (MIOX) via Perturbation in Metabolic Sensors. Biomedicines 2020; 8:E217. [PMID: 32708636 PMCID: PMC7400661 DOI: 10.3390/biomedicines8070217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/13/2023] Open
Abstract
Obesity is associated with perturbations in cellular energy homeostasis and consequential renal injury leading to chronic renal disease (CKD). Myo-inositol oxygenase (MIOX), a tubular enzyme, alters redox balance and subsequent tubular injury in the settings of obesity. Mechanism(s) for such adverse changes remain enigmatic. Conceivably, MIOX accentuates renal injury via reducing expression/activity of metabolic sensors, which perturb mitochondrial dynamics and, if sustained, would ultimately contribute towards CKD. In this brief communication, we utilized MIOX-TG (Transgenic) and MIOXKO mice, and subjected them to high fat diet (HFD) administration. In addition, ob/ob and ob/MIOXKO mice of comparable age were used. Mice fed with HFD had increased MIOX expression and remarkable derangements in tubular injury biomarkers. Decreased expression of p-AMPKα (phospho AMP-activated protein kinase) in the tubules was also observed, and it was accentuated in MIOX-TG mice. Interestingly, ob/ob mice also had decreased p-AMPKα expression, which was restored in ob/MIOXKO mice. Parallel changes were observed in Sirt1/Sirt3 (silent mating type information regulation 2 homolog), and expression of other metabolic sensors, i.e., PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and Yin Yang (YY-1). In vitro experiments with tubular cells subjected to palmitate-BSA and MIOX-siRNA had results in conformity with the in vivo observations. These findings link the biology of metabolic sensors to MIOX expression in impaired cellular energy homeostasis with exacerbation/amelioration of renal injury.
Collapse
Affiliation(s)
| | | | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (I.S.); (F.D.)
| |
Collapse
|
34
|
Uni R, Inoue T, Nakamura Y, Fukaya D, Hasegawa S, Wu CH, Fujii R, Surattichaiyakul B, Peerapanyasut W, Ozeki A, Akimitsu N, Wada Y, Nangaku M, Inagi R. Vagus nerve stimulation even after injury ameliorates cisplatin-induced nephropathy via reducing macrophage infiltration. Sci Rep 2020; 10:9472. [PMID: 32528023 PMCID: PMC7290038 DOI: 10.1038/s41598-020-66295-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 01/25/2023] Open
Abstract
The efficacy of prior activation of an anti-inflammatory pathway called the cholinergic anti-inflammatory pathway (CAP) through vagus nerve stimulation (VNS) has been reported in renal ischemia-reperfusion injury models. However, there have been no reports that have demonstrated the effectiveness of VNS after injury. We investigated the renoprotective effect of VNS in a cisplatin-induced nephropathy model. C57BL/6 mice were injected with cisplatin, and VNS was conducted 24 hours later. Kidney function, histology, and a kidney injury marker (Kim-1) were evaluated 72 hours after cisplatin administration. To further explore the role of the spleen and splenic macrophages, key players in the CAP, splenectomy, and adoptive transfer of macrophages treated with the selective α7 nicotinic acetylcholine receptor agonist GTS-21 were conducted. VNS treatment significantly suppressed cisplatin-induced kidney injury. This effect was abolished by splenectomy, while adoptive transfer of GTS-21-treated macrophages improved renal outcomes. VNS also reduced the expression of cytokines and chemokines, including CCL2, which is a potent chemokine attracting monocytes/macrophages, accompanied by a decline in the number of infiltrating macrophages. Taken together, stimulation of the CAP protected the kidney even after injury in a cisplatin-induced nephropathy model. Considering the feasibility and anti-inflammatory effects of VNS, the findings suggest that VNS may be a promising therapeutic tool for acute kidney injury.
Collapse
Affiliation(s)
- Rie Uni
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan.,Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsuyoshi Inoue
- Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yasuna Nakamura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daichi Fukaya
- Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan.,Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Fujii
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan.,Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Bongkod Surattichaiyakul
- Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Atsuko Ozeki
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate, School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Reiko Inagi
- Division of CKD, Pathophysiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
35
|
Deng F, Sharma I, Dai Y, Yang M, Kanwar YS. Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Invest 2020; 129:5033-5049. [PMID: 31437128 DOI: 10.1172/jci129903] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which were alleviated by ferrostatin-1, a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, WT mice, MIOX-overexpressing transgenic (MIOX-Tg) mice, and MIOX-KO mice were subjected to cisplatin treatment. In comparison with cisplatin-treated WT mice, cisplatin-treated MIOX-Tg mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of cisplatin-induced AKI, is modulated by the expression profile of MIOX.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Isha Sharma
- Department of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, Guangdong, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
36
|
Sharma I, Deng F, Liao Y, Kanwar YS. Myo-inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulointerstitial Injury in Diabetes. Diabetes 2020; 69:1248-1263. [PMID: 32169892 PMCID: PMC7243294 DOI: 10.2337/db19-0935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP1, a transcription factor of endoplasmic reticulum (ER) stress response. Previous studies indicate that MIOX's upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated whether hyperglycemia leads to accentuation of oxidant and ER stress while these boost each other's activities, thereby augmenting tubulointerstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and MIOX knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2 Akita to generate Ins2 Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/dihydroethidium staining, perturbed NAD-to-NADH and glutathione-to-glutathione disulfide ratios, increased NOX4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers), and accelerated tubulointerstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2 Akita/KO mice and, likewise, in vitro experiments with XBP1 siRNA. These findings suggest that MIOX expression accentuates, while its deficiency shields kidneys from, tubulointerstitial injury by dampening oxidant and ER stress, which mutually enhance each other's activity.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pathology, Northwestern University, Chicago, IL
| | - Fei Deng
- Department of Pathology, Northwestern University, Chicago, IL
| | - Yingjun Liao
- Department of Pathology, Northwestern University, Chicago, IL
| | | |
Collapse
|
37
|
Mitophagy in Acute Kidney Injury and Kidney Repair. Cells 2020; 9:cells9020338. [PMID: 32024113 PMCID: PMC7072358 DOI: 10.3390/cells9020338] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.
Collapse
|
38
|
Urinary myo-inositol is associated with the clinical outcome in focal segmental glomerulosclerosis. Sci Rep 2019; 9:14707. [PMID: 31605028 PMCID: PMC6789025 DOI: 10.1038/s41598-019-51276-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) have similar initial histological findings; however, their prognoses are distinct. Therefore, it is of great importance to discriminate FSGS from MCD in the early phase of disease and predict clinical prognosis. A discovery set of 184 urine samples (61 healthy control, 80 MCD, and 43 FSGS) and a validation set of 61 urine samples (12 healthy control, 26 MCD, and 23 FSGS) were collected at the time of kidney biopsy. Metabolic profiles were examined using nuclear magnetic resonance spectroscopy. Of 70 urinary metabolites, myo-inositol was significantly higher in FSGS patients than in control patients (discovery set, 2.34-fold, P < 0.001; validation set, 2.35-fold, P = 0.008) and MCD patients (discovery set, 2.48-fold, P = 0.002; validation set, 1.69-fold, P = 0.042). Myo-inositol showed an inverse relationship with the initial estimated glomerular filtration rate (eGFR) and was associated with the plasma level of soluble urokinase-type plasminogen activator receptor in FSGS patients. Myo-inositol treatment ameliorated the decreased expression of ZO-1 and synaptopodin in an in vitro FSGS model, and as myo-inositol increased, myo-inositol oxygenase tissue expression decreased proportionally to eGFR. Furthermore, urinary myo-inositol exhibited an increase in the power to discriminate FSGS patients, and its addition could better predict the response to initial treatment. In conclusion, urinary myo-inositol may be an important indicator in the diagnosis and treatment of FSGS patients.
Collapse
|
39
|
Teng F, You R, Hu M, Liu W, Wang L, Tao Y. Production of d-glucuronic acid from myo-inositol using Escherichia coli whole-cell biocatalyst overexpressing a novel myo-inositol oxygenase from Thermothelomyces thermophile. Enzyme Microb Technol 2019; 127:70-74. [DOI: 10.1016/j.enzmictec.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 01/12/2023]
|
40
|
Sampaio TL, Menezes RRPPBD, Lima DB, Costa Silva RA, de Azevedo IEP, Magalhães EP, Marinho MM, dos Santos RP, Martins AMC. Involvement of NADPH-oxidase enzyme in the nephroprotective effect of (−)-α-bisabolol on HK2 cells exposed to ischemia – Reoxygenation. Eur J Pharmacol 2019; 855:1-9. [DOI: 10.1016/j.ejphar.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
41
|
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2019; 20:ijms20123011. [PMID: 31226747 PMCID: PMC6627318 DOI: 10.3390/ijms20123011] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
43
|
Mapuskar KA, Wen H, Holanda DG, Rastogi P, Steinbach E, Han R, Coleman MC, Attanasio M, Riley DP, Spitz DR, Allen BG, Zepeda-Orozco D. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol 2018; 20:98-106. [PMID: 30296702 PMCID: PMC6174865 DOI: 10.1016/j.redox.2018.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Severe and recurrent cisplatin-induced acute kidney injury (AKI) as part of standard cancer therapy is a known risk factor for development of chronic kidney disease (CKD). The specific role of superoxide (O2•-)-mediated disruption of mitochondrial oxidative metabolism in CKD after cisplatin treatment is unexplored. Cisplatin is typically administered in weekly or tri-weekly cycles as part of standard cancer therapy. To investigate the role of O2•- in predisposing patients to future renal injury and in CKD, mice were treated with cisplatin and a mitochondrial-specific, superoxide dismutase (SOD) mimetic, GC4419. Renal function, biomarkers of oxidative stress, mitochondrial oxidative metabolism, and kidney injury markers, as well as renal histology, were assessed to evaluate the cellular changes that occur one week and one month (CKD phase) after the cisplatin insult. Cisplatin treatment resulted in persistent upregulation of kidney injury markers, increased steady-state levels of O2•-, increased O2•--mediated renal tubules damage, and upregulation of mitochondrial electron transport chain (ETC) complex I activity both one week and one month following cisplatin treatment. Treatment with a novel, clinically relevant, small-molecule superoxide dismutase (SOD) mimetic, GC4419, restored mitochondrial ETC complex I activity to control levels without affecting complexes II–IV activity, as well as ameliorated cisplatin-induced kidney injury. These data support the hypothesis that increased mitochondrial O2•- following cisplatin administration, as a result of disruptions of mitochondrial metabolism, may be an important contributor to both AKI and CKD progression. Cisplatin-induced AKI and CKD have a negative impact in long-term renal function. Cisplatin-induced CKD disrupts mitochondrial metabolism and increases O2•- levels. SOD mimetic, GC4419 mitigates renal damage and mitochondrial metabolism disruptions.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Hsiang Wen
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Danniele G Holanda
- Department of Pathology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Prerna Rastogi
- Department of Pathology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Emily Steinbach
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Rachel Han
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Mitchell C Coleman
- Department of Orthopedics and Rehabilitation, The University of Iowa, Iowa City, IA, 52242, United States
| | - Massimo Attanasio
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, 52242, United States
| | | | - Douglas R Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Bryan G Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Diana Zepeda-Orozco
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States.
| |
Collapse
|
44
|
Zhang H, Liu L, Li L. Lentivirus-mediated knockdown of FcγRI (CD64) attenuated lupus nephritis via inhibition of NF-κB regulating NLRP3 inflammasome activation in MRL/lpr mice. J Pharmacol Sci 2018; 137:342-349. [DOI: 10.1016/j.jphs.2018.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
|
45
|
Yu SMW, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:166-180. [PMID: 29580581 DOI: 10.1053/j.ackd.2017.12.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Diabetic kidney disease, commonly termed diabetic nephropathy (DN), is the most common cause of end-stage kidney disease (ESKD) worldwide. The characteristic histopathology of DN includes glomerular basement membrane thickening, mesangial expansion, nodular glomerular sclerosis, and tubulointerstitial fibrosis. Diabetes is associated with a number of metabolic derangements, such as reactive oxygen species overproduction, hypoxic state, mitochondrial dysfunction, and inflammation. In the past few decades, our knowledge of DN has advanced considerably although much needs to be learned. The traditional paradigm of glomerulus-centered pathophysiology has expanded to the tubule-interstitium, the immune response and inflammation. Biomarkers of proximal tubule injury have been shown to correlate with DN progression, independent of traditional glomerular injury biomarkers such as albuminuria. In this review, we summarize mechanisms of increased susceptibility to acute kidney injury in diabetes mellitus and the roles played by many kidney cell types to facilitate maladaptive responses leading to chronic and end-stage kidney disease.
Collapse
|
46
|
Mertoglu C, Gunay M, Gurel A, Gungor M. Myo-inositol Oxygenase as a Novel Marker in the Diagnosis of Acute Kidney Injury. J Med Biochem 2018; 37:1-6. [PMID: 30581335 PMCID: PMC6294104 DOI: 10.1515/jomb-2017-0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/05/2017] [Indexed: 01/28/2023] Open
Abstract
Background Due to the lack of diagnostic efficiency of serum creatinine in acute kidney injury (AKI), there is a pressing need to develop novel diagnostic markers. Therefore, in this study, we evaluated myo–inositol oxygenase (MIOX), neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C in terms of their applicability in the diagnosis of AKI. Methods We enrolled a total of 39 AKI patients and 38 healthy controls in the study. We compared the levels of serum MIOX, NGAL and cystatin C between the two groups. Results We found that the concentrations of serum creatinine, blood-urea nitrogen, MIOX and cystatin C were higher in the AKI group. According to the receiver operating characteristic analysis, the area under the curve (AUC) values were 0.694 (95% CI 0.579-0.794) for MIOX and 0.976 (95% CI; 0.912-0.997) for cystatin C. For MIOX, when the cut-off concentration was set to 77.3 pg/mL, the diagnostic sensitivity and specificity were found to be 53.8% (95% CI; 37.2-69.9) and 81.5 (95% CI; 65.7-92.3), respectively. For cystatin C, at the cut-off value of 14 mg/L, the diagnostic sensitivity and specificity were 94.8% (95% CI; 82.7-99.4) and 94.7 % (95% CI 82.3-99.4), respectively. Conclusion The measurement of serum MIOX and cystatin C levels is valuable for the diagnosis of AKI. Further research is needed for the evaluation of the potential use of MIOX as a kidney-specific enzyme in the early diagnosis of AKI.
Collapse
Affiliation(s)
- Cuma Mertoglu
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Murat Gunay
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Ali Gurel
- Department of Nephrology, Mengucek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Mehmet Gungor
- Department of Clinical Biochemistry, Sivas State Hospital, Sivas, Turkey
| |
Collapse
|
47
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
48
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
49
|
Yan W, Xu Y, Yuan Y, Tian L, Wang Q, Xie Y, Shao X, Zhang M, Ni Z, Mou S. Renoprotective mechanisms of Astragaloside IV in cisplatin-induced acute kidney injury. Free Radic Res 2017; 51:669-683. [PMID: 28750561 DOI: 10.1080/10715762.2017.1361532] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Yan
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Yuan
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Tian
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xie
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Transplantation Center of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Weber EJ, Himmelfarb J, Kelly EJ. Concise Review: Current and Emerging Biomarkers of Nephrotoxicity. CURRENT OPINION IN TOXICOLOGY 2017; 4:16-21. [PMID: 29057384 PMCID: PMC5647884 DOI: 10.1016/j.cotox.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The kidney is a primary organ for filtration of the blood and elimination of drugs and xenobiotics. These active reabsorptive and secretory processes can result in acute kidney injury as a result of these concentrative properties. Classic measures of acute kidney injury are hampered by their ability to accurately assess function before irreversible damage has occurred. This review will discuss efforts to refine the clinical utility of standard biomarkers as well as the development of novel biomarkers of nephrotoxicity.
Collapse
Affiliation(s)
- Elijah J Weber
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195
| | | | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195
| |
Collapse
|