1
|
Vojnits K, Feng Z, Johnson P, Porras D, Manocha E, Vandersluis S, Pfammatter S, Thibault P, Bhatia M. Targeting of human cancer stem cells predicts efficacy and toxicity of FDA-approved oncology drugs. Cancer Lett 2024; 599:217108. [PMID: 38986735 DOI: 10.1016/j.canlet.2024.217108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Cancer remains the leading cause of death worldwide with approved oncology drugs continuing to have heterogenous patient responses and accompanied adverse effects (AEs) that limits effectiveness. Here, we examined >100 FDA-approved oncology drugs in the context of stemness using a surrogate model of transformed human pluripotent cancer stem cells (CSCs) vs. healthy stem cells (hSCs) capable of distinguishing abnormal self-renewal and differentiation. Although a proportion of these drugs had no effects (inactive), a larger portion affected CSCs (active), and a unique subset preferentially affected CSCs over hSCs (selective). Single cell gene expression and protein profiling of each drug's FDA recognized target provided a molecular correlation of responses in CSCs vs. hSCs. Uniquely, drugs selective for CSCs demonstrated clinical efficacy, measured by overall survival, and reduced AEs. Our findings reveal that while unintentional, half of anticancer drugs are active against CSCs and associated with improved clinical outcomes. Based on these findings, we suggest ability to target CSC targeting should be included as a property of early onco-therapeutic development.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Zhuohang Feng
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paige Johnson
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Deanna Porras
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ekta Manocha
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sean Vandersluis
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sibylle Pfammatter
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Pierre Thibault
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Mick Bhatia
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
3
|
Moran-Sanchez J, Santisteban-Espejo A, Martin-Piedra MA, Perez-Requena J, Garcia-Rojo M. Translational Applications of Artificial Intelligence and Machine Learning for Diagnostic Pathology in Lymphoid Neoplasms: A Comprehensive and Evolutive Analysis. Biomolecules 2021; 11:793. [PMID: 34070632 PMCID: PMC8227233 DOI: 10.3390/biom11060793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic analysis and digitalization of medical records have led to a big data scenario within hematopathology. Artificial intelligence and machine learning tools are increasingly used to integrate clinical, histopathological, and genomic data in lymphoid neoplasms. In this study, we identified global trends, cognitive, and social framework of this field from 1990 to 2020. Metadata were obtained from the Clarivate Analytics Web of Science database in January 2021. A total of 525 documents were assessed by document type, research areas, source titles, organizations, and countries. SciMAT and VOSviewer package were used to perform scientific mapping analysis. Geographical distribution showed the USA and People's Republic of China as the most productive countries, reporting up to 190 (36.19%) of all documents. A third-degree polynomic equation predicts that future global production in this area will be three-fold the current number, near 2031. Thematically, current research is focused on the integration of digital image analysis and genomic sequencing in Non-Hodgkin lymphomas, prediction of chemotherapy response and validation of new prognostic models. These findings can serve pathology departments to depict future clinical and research avenues, but also, public institutions and administrations to promote synergies and optimize funding allocation.
Collapse
Affiliation(s)
- Julia Moran-Sanchez
- Division of Hematology and Hemotherapy, Puerta del Mar Hospital, 11009 Cadiz, Spain;
- Ph.D Program of Clinical Medicine and Surgery, University of Cadiz, 11009 Cadiz, Spain
| | - Antonio Santisteban-Espejo
- Pathology Department, Puerta del Mar Hospital, 11009 Cadiz, Spain; (J.P.-R.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), University of Cadiz, 11009 Cadiz, Spain
| | | | - Jose Perez-Requena
- Pathology Department, Puerta del Mar Hospital, 11009 Cadiz, Spain; (J.P.-R.); (M.G.-R.)
| | - Marcial Garcia-Rojo
- Pathology Department, Puerta del Mar Hospital, 11009 Cadiz, Spain; (J.P.-R.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
4
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
5
|
Keefe DMK, Bateman EH. Potential Successes and Challenges of Targeted Cancer Therapies. J Natl Cancer Inst Monogr 2020; 2019:5551349. [PMID: 31425592 DOI: 10.1093/jncimonographs/lgz008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/29/2019] [Accepted: 04/19/2019] [Indexed: 01/15/2023] Open
Abstract
The concept and realization of targeted anticancer therapy (TAT) have existed for at least two decades and continue to expand rapidly. It has become clear that there is no "magic bullet" to cure cancer and that even TATs are unlikely to be successful as single agents, necessitating combination with chemotherapy, radiotherapy, or even other targeting agents. The other promise that has not been fulfilled by TAT is that of reduced toxicity. It was thought that by targeting receptors on or within cells, rather than particular phases of the cell cycle, TATs would not be toxic. However, it turns out that the targets also exist on or within normal cells and that there is even cross-reactivity between receptors on nontarget tissues. All of this results in toxicity, the mechanism of which are the same as the mechanism of action of the drugs, making toxicity reduction or prevention very difficult. This leads to new toxicities with new targeted treatments. Nevertheless, all of the above should not detract from the obvious successes of targeted agents, which have turned several acutely fatal cancers into chronic diseases and rendered some hitherto untreatable cancers into treatable diseases.
Collapse
Affiliation(s)
- Dorothy M K Keefe
- Mucositis Research Group, Discipline of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Emma H Bateman
- Mucositis Research Group, Discipline of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
|
7
|
Delord M, Foulon S, Cayuela JM, Rousselot P, Bonastre J. The rising prevalence of chronic myeloid leukemia in France. Leuk Res 2018; 69:94-99. [PMID: 29734071 DOI: 10.1016/j.leukres.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Outcomes in chronic myeloid leukemia (CML) have been dramatically improved since the emergence of imatinib and the subsequent generation of tyrosine kinase inhibitors (TKI) in the early 2000s. Indeed, CML is now associated with near-normal life expectancy for the majority of patients, provided they adhere to lifelong TKI-based treatment. This paradigm, in which CML can be regarded as a chronic disease, has inherent consequences on the prevalence of the disease. Our objective was to study CML prevalence trend in the French population from 1960 to 2060. We used a cohort component-based model to forecast the prevalence of CML using projections of the French population, the estimated incidence rates by age and sex, and various hypotheses on the year-specific relative survival. CML prevalence in France is estimated at 2.5 per 100,000 inhabitants before the 1980s, with a progression up to 6 by 2002. Since 2002 this trend has increased further, with current and predicted prevalence reaching levels around 18 and 24 per 100,000 in 2018 and 2030 respectively. CML prevalence reaches 30 per 100,000 by 2050 when progression slows. Our simulations show that prevalence of CML is driven by both population aging and relative survival improvement. The grey area corresponds to the expected prevalence of CML.
Collapse
Affiliation(s)
- Marc Delord
- Institut Universitaire d'Hématologie, Université Paris 7, Hôpital Saint Louis, Paris, France.
| | - Stéphanie Foulon
- Institut Gustave Roussy, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France; CESP, Centre for Research in Epidemiology and Population Health, INSERM U1018, Paris-Sud Univ., Villejuif, France
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint Louis, Assistance Publique - Hôpitaux de Paris, France; EA3518, University Paris Diderot, Paris, France
| | - Philippe Rousselot
- Hematology and Oncology Department, Centre Hospitalier de Versailles, Le Chesnay, France; INSERM UMR 1173, Université Versailles Saint-Quentin-en-Yvelines, Paris-Saclay, France
| | - Julia Bonastre
- Institut Gustave Roussy, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France; CESP, Centre for Research in Epidemiology and Population Health, INSERM U1018, Paris-Sud Univ., Villejuif, France
| |
Collapse
|
8
|
Abstract
Chromosome banding is an essential technique used in chromosome karyotyping to identify normal and abnormal chromosomes for clinical and research purposes. Giemsa (G)-, reverse (R)-, and centromere (C)-banding are the most commonly dye-based chromosome-banding techniques. G-banding involves the staining of trypsin-treated chromosomes and R-banding involves denaturing in hot acidic saline followed by Giemsa staining. C-banding is specifically used for identifying heterochromatin by denaturing chromosomes in a saturated alkaline solution followed by Giemsa staining. Different banding techniques may be selected for the identification of chromosomes.
Collapse
Affiliation(s)
- Huifang Huang
- Central Laboratory, Fujian Medical University Affiliated Union Hospital, 29 Xinquan Road, Fuzhou, 350001, P. R. China.
| | - Jiadi Chen
- Fujian Institute of Hematology, Fujian Medical University Affiliated Union Hospital, Fuzhou, P. R. China
| |
Collapse
|
9
|
Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control 2016; 22:158-66. [PMID: 26068760 DOI: 10.1177/107327481502200206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Molecular interrogation of genetic information has transformed our understanding of disease and is now routinely integrated into the workup and monitoring of hematological malignancies. In this article, a brief but comprehensive review is presented of state-of-the-art testing in hematological disease. METHODS The primary medical literature and standard textbooks in the field were queried and reviewed to assess current practices and trends for molecular testing in hematopathology by disease. RESULTS Pertinent materials were summarized under appropriate disease categories. CONCLUSION Molecular testing is well entrenched in the diagnostic and therapeutic pathways for hematological malignancies, with rapid growth and insights emerging following the integration of next-generation sequencing into the clinical workflow.
Collapse
Affiliation(s)
- Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|