1
|
Huang C, Luo Y, Liu Y, Liu J, Chen Y, Zeng B, Liao X, Liu Y, Wang X. DNA hypermethylation-induced suppression of ALKBH5 is required for folic acid to alleviate hepatic lipid deposition by enhancing autophagy in an ATG12-dependent manner. J Nutr Biochem 2025; 140:109870. [PMID: 39993647 DOI: 10.1016/j.jnutbio.2025.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/08/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs when too much fat builds up in the liver. As a growing worldwide epidemic, NAFLD is strongly linked with multiple metabolic diseases including obesity, insulin resistance, and dyslipidemia. However, very few effective treatments are currently available. Folate, an essential B-group vitamin with important biological functions including DNA and RNA methylation regulation, has been shown to have a protective effect against NAFLD with its underlying mechanism remains largely unclear. Here, we show that administration of folic acid significantly improves glucose tolerance, insulin sensitivity, and dyslipidemia in high-fat diet (HFD) fed mice. Moreover, folic acid treatment significantly inhibits lipid deposition in hepatocytes both in vivo and in vitro. Mechanically, folic acid reduces the expression of m6A demethylase AlkB homolog 5 (ALKHB5) via promoter DNA hypermethylation. Decreased ALKBH5 causes increased m6A modification and increased expression of ATG12 in a demethylase activity-dependent manner, thereby promoting autophagy and preventing hepatic steatosis. Inhibition of ATG12 induced by overexpression of ALKBH5 could impair autophagy and the inhibitory effect of folic acid on lipid accumulation in hepatocytes. Together, these findings provide novel insights into understanding the protective role of folic acid in the treatment of NAFLD and suggest that folic acid may be a potential agent for combating NAFLD.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China.
| |
Collapse
|
2
|
Liao X, Yu S, Wang L, Zhang R, Yu K. Elevated red blood cell folate levels are associated with metabolic dysfunction-associated steatotic liver disease: results from NHANES 2017-2020. Front Physiol 2025; 16:1494863. [PMID: 40182691 PMCID: PMC11965589 DOI: 10.3389/fphys.2025.1494863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide. However, the role of folate in MASLD remains controversial. This study aimed to investigate the association between two folate indicators [serum folate and red blood cell (RBC) folate] and MASLD prevalence using data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). Methods A total of 3,879 participants without liver disease or significant alcohol consumption were included in the final analysis. Hepatic steatosis was assessed via transient elastography, with MASLD defined as a controlled attenuation parameter (CAP) ≥285 dB/m and the presence of at least one cardiometabolic risk factor. Logistic regression and generalized additive models (GAMs) were used to evaluate associations between folate levels and MASLD, with subgroup analyses stratified by age, gender, and body mass index (BMI). Results After full adjustment for confounders, RBC folate exhibited a significant positive association with MASLD (OR = 1.111 and 95% CI: 1.015-1.216 per 1-unit increase). In contrast, serum folate showed a transient negative association in minimally adjusted models (OR = 0.869 and 95% CI: 0.802-0.941), which disappeared after further adjustments. Subgroup analyses confirmed that age, gender, and BMI did not modify the RBC folate-MASLD relationship. Discussion These findings suggest that elevated RBC folate levels are independently associated with MASLD prevalence, whereas serum folate may lack clinical relevance due to susceptibility to confounding factors. RBC folate, as a stable biomarker of long-term folate status, may serve as a superior indicator for investigating folate-MASLD associations.
Collapse
Affiliation(s)
- Xin Liao
- Department of General Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Song Yu
- Department of General Medicine, the Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, Sichuan, China
| | - Lin Wang
- Department of General Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Ruyue Zhang
- Department of General Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Ke Yu
- Department of General Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yang M, Wang D, Wang X, Mei J, Gong Q. Role of Folate in Liver Diseases. Nutrients 2024; 16:1872. [PMID: 38931227 PMCID: PMC11206401 DOI: 10.3390/nu16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease, and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is substantial evidence that folate deficiency contributes to the development and progression of a variety of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we review key studies on the role of folate in the pathophysiology of liver diseases, summarize the current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Minlan Yang
- School of Medicine, Yangtze University, Jingzhou 434020, China
| | | | | | | | - Quan Gong
- School of Medicine, Yangtze University, Jingzhou 434020, China
| |
Collapse
|
4
|
Yao B, Lu X, Xu L, Jiang Y. Association of serum folate with prevalence of non-alcoholic fatty liver disease among adults (NHANES 2011-2018). Front Nutr 2023; 10:1141156. [PMID: 37113299 PMCID: PMC10126427 DOI: 10.3389/fnut.2023.1141156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Folate was involved in oxidative stress, hepatic lipid metabolism and chronic hepatic inflammation. However, evidence about the association between serum folate level and non-alcoholic fatty liver disease (NAFLD) in general population is scarce. This study aimed to explore the relationship between serum folate level and NAFLD among adults. Methods 7,146 adult participants aged 20 years and over who have complete data of serum folate level and liver function biomarkers in NHANES 2011-2018 were included. Serum folate level was measured by isotope-dilution high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). And suspected NAFLD was defined according to the United States fatty liver index (USFLI). Logistic regression and the restricted cubic spline models were performed. Results Serum folate level was inversely associated with the presence of NAFLD. When comparing the second, third and fourth quartiles of serum folate level to the lowest quartile, the adjusted ORs of the presence of NAFLD were 0.62 (0.49-0.78), 0.65 (0.51-0.84), and 0.43 (0.32-0.56) respectively (p for trend<0.001). The non-linear and L-shaped relationship was found between serum folate level and the presence of NAFLD in the restricted cubic spline regression (p for non-linearity <0.01). Consistent with serum total folate, serum 5-Methyltetrahydrofolate level was also inversely associated with the presence of NAFLD. Conclusion Higher serum folate level may be negatively associated with NAFLD.
Collapse
|
6
|
Zhang X, Deng Y, Xiang J, Liu H, Zhang J, Liao J, Chen K, Liu B, Liu J, Pu Y. Galangin Improved Non-Alcoholic Fatty Liver Disease in Mice by Promoting Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3393-3405. [PMID: 32884242 PMCID: PMC7443405 DOI: 10.2147/dddt.s258187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Background Previous studies have shown that curcumin derivatives can improve the fatty degeneration of liver tissue that occurs in nonalcoholic fatty liver disease (NAFLD). However, the specific mechanism for that improvement remains unclear. We examined whether the curcumin derivative galangin could reduce the fatty degeneration of liver tissue in mice with NAFLD by inducing autophagy, from the perspective of both prevention and treatment. Methods C57BL/6J mice were randomly assigned to a prevention group (given galangin and a HFD simultaneously) or a treatment group (given galangin after being fed an HFD). The prevention group was treated with galangin (100 mg/kg/d) or an equal volume of normal saline (NS) while being fed an HFD. Some mice were treated with an autophagy inhibitor (3-methyladenine, 3-MA; 30 mg/kg/biwk, i.p.) while being fed an HFD and galangin. HepG2 cells were cultured in DMEM medium containing both free fatty acids and galangin. Results Galangin was found to reduce the fatty degeneration of liver tissue induced by eating an HFD at both the prevention and treatment levels, and that effect might be related to an enhancement of hepatocyte autophagy. Inhibition of autophagy by 3-MA blocked the protective effect of galangin on hepatic steatosis. At the cellular level, galangin reduced lipid accumulation and enhanced the level of hepatocyte autophagy. Conclusion In vitro and in vivo studies showed that galangin cannot only improve pre-existing hepatic steatosis but also prevent the development of stenosis by promoting hepatocyte autophagy.
Collapse
Affiliation(s)
- Xinxu Zhang
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yuanyuan Deng
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Juan Xiang
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Huixia Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jiani Zhang
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jie Liao
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ke Chen
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bo Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jun Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ying Pu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|