1
|
Waoo AA, Singh S, Pandey A, Kant G, Choure K, Amesho KT, Srivastava S. Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon 2023; 9:e18613. [PMID: 37593641 PMCID: PMC10432183 DOI: 10.1016/j.heliyon.2023.e18613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The most significant and renewable class of polymeric materials are extracellular exopolysaccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural makeup, EPSs play a variety of functions in a variety of industries, including the agricultural industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological significance. EPSs are typically utilized in high-value applications, and current research has focused heavily on them because of their biocompatibility, biodegradability, and compatibility with both people and the environment. Due to their high production costs, only a few microbial EPSs have been commercially successful. The emergence of financial barriers and the growing significance of microbial EPSs in industrial and medical biotechnology has increased interest in exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is expected to increase across a wide range of industries in the coming years. This review introduces some significant EPSs and their composites while concentrating on their biomedical uses.
Collapse
Affiliation(s)
| | - Sukhendra Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Satna, India
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, India
| | - Kassian T.T. Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakomund, Namibia
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
2
|
The Influence of Binding of Selected Mycotoxin Deactivators and Aflatoxin M1 on the Content of Selected Micronutrients in Milk. Processes (Basel) 2022. [DOI: 10.3390/pr10112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Milk containing aflatoxin M1 (ATM1) in quantities above 0.05 µg/kg is considered unsuitable for consumption. It is possible to use mycotoxin deactivators that bind aflatoxin M1 and allow the further use of milk. The study aimed to examine the impact of selected mycotoxin deactivators (beta-glucan from yeast and oats, and live and dead lactic acid bacteria) on the nutritional composition of milk after binding to aflatoxin M1 intentionally added to milk. The study used consumption milk with 2.8% milk fat intentionally contaminated with aflatoxin M1. Furthermore, 0.05% and 0.1% solutions of beta-glucan from yeast and beta-glucan from oats were added to the contaminated milk, as well as live and dead lactic acid. Concentrations of Na, K, Mg, and Ca were monitored at the zero hour of binding of mycotoxin deactivators and ATM1, after 2 h of binding, and after 4 and 24 h of binding. The largest deviations were found in Na, K, and Mg, while the minimum changes were observed in Ca. Live lactic acid bacteria were found to have the least impact on micronutrients, except in Na (difference = 40, p = 0.029, GES = 0.083), where the 0.1% solution from oats had the least impact on micronutrient content. The results of this study suggest that it is best to use live lactic acid bacteria where the different duration of action regarding nutrients, with the possible exception of Na, is not relevant, which indicates that, when using this mycotoxin deactivator, milk contaminated with ATM1 can be further used.
Collapse
|
3
|
Couderc C, Laroute V, Coddeville M, Caillaud MA, Jard G, Raynaud C, Cocaign-Bousquet M, Tormo H, Daveran-Mingot ML. Harnessing diversity of Lactococcus lactis from raw goat milk: Design of an indigenous starter for the production of Rocamadour, a French PDO cheese. Int J Food Microbiol 2022; 379:109837. [PMID: 35872491 DOI: 10.1016/j.ijfoodmicro.2022.109837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
Twenty-four strains of Lactococcus lactis isolated from raw goat milk collected in the Rocamadour PDO area were analysed by MLST typing and phenotypic characterisation. The strains were combined to design an indigenous starter for the production of Rocamadour PDO cheese. The strains were divided into three classes based on their technological properties: acidifying and proteolytic strains in class I (12/24 strains), slightly acidifying and non-proteolytic strains in class II (2/24 strains), and non-acidifying and non-proteolytic strains in class III (10/24 strains). Interestingly, all but three strains (21/24) produced diacetyl/acetoin despite not having citrate metabolism genes, as would classically be expected for the production of these aroma compounds. Three strains (EIP07A, EIP13D, and EIP20B) were selected for the indigenous starter based on the following inclusion/exclusion criteria: (i) no negative interactions between included strains, (ii) ability to metabolize lactose and at least one strain with the prtP gene and/or capable of producing diacetyl/acetoin, and (iii) selected strains derived from different farms to maximise genetic and phenotypic diversity. Despite consisting exclusively of L. lactis strains, the designed indigenous starter allowed reproducible cheese production with performances similar to those obtained with an industrial starter and with the sensory qualities expected of Rocamadour PDO cheese.
Collapse
Affiliation(s)
- Christel Couderc
- Université de Toulouse, Ecole d'Ingénieurs de Purpan, INPT, Toulouse, France.
| | - Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Gwenaelle Jard
- Université de Toulouse, Ecole d'Ingénieurs de Purpan, INPT, Toulouse, France
| | - Christine Raynaud
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INP-ENSIACET, Toulouse, France; Centre d'Application et de traitement des Agroressources (CATAR), INP-ENSIACET, Toulouse, France
| | | | - Hélène Tormo
- Université de Toulouse, Ecole d'Ingénieurs de Purpan, INPT, Toulouse, France
| | - Marie-Line Daveran-Mingot
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France; Université Toulouse 3 - Paul Sabatier, Université de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Lee HW, Kim IS, Kil BJ, Seo E, Park H, Ham JS, Choi YJ, Huh CS. Investigation of Flavor-Forming Starter Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803 in Miniature Gouda-Type Cheeses. J Microbiol Biotechnol 2020; 30:1404-1411. [PMID: 32522956 PMCID: PMC9728400 DOI: 10.4014/jmb.2004.04004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.
Collapse
Affiliation(s)
- Hye Won Lee
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - In Seon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Bum Ju Kil
- WCU Biomodulation Major and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunsol Seo
- WCU Biomodulation Major and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjoon Park
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jun-Sang Ham
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea,Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea,Corresponding authors Y.J.C. Phone: +82-2-880-4807 Fax: +82-2-880-7340 E-mail:
| | - Chul Sung Huh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea,C.S.H. Phone: +82-33-339-5723 Fax: +82-33-339-5855 E-mail:
| |
Collapse
|
5
|
The survival rate and efficiency of non-encapsulated and encapsulated native starter cultures to improve the quality of artisanal game meat sausages. Journal of Food Science and Technology 2020; 58:710-719. [PMID: 33568865 DOI: 10.1007/s13197-020-04587-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
This study addresses the application of native, multiple strain starter cultures for standardization of game meat sausages production. The designed starter cultures consisting of two indigenous Lactobacillus sakei and one Leuconostoc mesenteroides strains. These strains were used in both, the encapsulated and non-encapsulated form, in the game meat dough, individually or in combination, with eight treatments in total. Microbiological and physicochemical characteristics of the sausages were monitored throughout the manufacturing process, while sensory properties, biogenic amine content, and volatile compounds were evaluated in the final products. As revealed by rep-PCR, native starter cultures, encapsulated or non-encapsulated, had survived the whole sausage production process; however, to varying degrees. The application of indigenous decarboxylase negative Lb. sakei strains significantly (P < 0.05) reduced tyramine content, rapidly decreased pH and promoted the number reduction of Enterobacteriaceae and elimination of E. coli, L. monocytogenes and coliforms in ready-to-eat products. A total of 84 volatile compounds were identified by SPME-GC-MS in the eight treatment batches of game meat sausages, with only minor differences between the treatments. No significant differences in sensory traits (P > 0.05) between tested treatments were found, although treatment with the Lb. sakei strains received the highest scores for the sensory traits including cross-section, odour, hardness, aroma, and overall acceptability. Combination of multi-strain Lb. sakei starter cultures resulted in growth prevention of undesirable microbiota, reduction of tyramine content and increased the acceptability parameters of full-ripened sausages, which make them good candidates for industrial as well as artisanal application.
Collapse
|
6
|
Cordeiro M, Souza E, Arantes R, Balthazar C, Guimarães J, Scudino H, Silva H, Rocha R, Freitas M, Esmerino E, Silva M, Pimentel T, Granato D, Costa R, Cruz A, Martins F. Fermented whey dairy beverage offers protection against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. J Dairy Sci 2019; 102:6756-6765. [DOI: 10.3168/jds.2019-16340] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
|
7
|
Removing aflatoxin M1 from milk with native lactic acid bacteria, centrifugation, and filtration. Arh Hig Rada Toksikol 2019; 69:334-339. [DOI: 10.2478/aiht-2018-69-3160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
In order to minimise human exposure to aflatoxin M1 (AFM1) the levels of this highly carcinogenic mycotoxin in milk, heat-treated milk, and other dairy products have been limited to <0.05 μg kg-1. However, its removal from dairy products presents a challenge for dairy producers, as commercial additives change organoleptic properties, and filtration alone yields poor results. The aim of this study was to find a strain of lactic acid bacteria (LAB) from milk or dairy products that most effectively binds AFM1 and to see whether heat treatment of the selected LAB affects the binding efficiency. We also wanted to investigate whether centrifugation can improve filtering of the obtained AFM1-LAB complexes from milk. To do that, we isolated and identified 10 native LAB species/strains, incubated their viable or heat-treated cells (108 CFU mL-1) in milk spiked with 0.5 μg L-1of AFM1 at 4 °C for 0, 2, 4, and 24 h, and quantified the amount of unbound AFM1 with HPLC. AFM1 binding efficiency ranged from 21 to 92 % for viable cells and from 26 to 94 % for the heattreated ones. Since both viable and heat-treated Lactobacillus plantarum KM showed the best results, we used it for the next step in AFM1 removal from milk. Heat treatment in combination with filtration and centrifugation yielded removal as high as 96 %.
Collapse
|
8
|
Čanak I, Markov K, Melvan E, Starčević A, Živković M, Zadravec M, Pleadin J, Jakopović Ž, Kostelac D, Frece J. Isolation and Characterisation of L. plantarum O1 Producer
of Plantaricin as Potential Starter Culture for the Biopreservation of Aquatic Food Products. Food Technol Biotechnol 2018; 56:581-589. [PMID: 30923455 PMCID: PMC6399718 DOI: 10.17113/ftb.56.04.18.5707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus plantarum O1 was isolated from the gut of sea bream (Sparus aurata) and identified with the API biochemical test and MALDI-TOF MS. This strain was further characterised according to the selection criteria for lactic acid bacteria as starter cultures for aquatic food production. L. plantarum O1 showed good antimicrobial activity against pathogenic test microorganisms. Further investigation confirmed it as the producer of the bacteriocin plantaricin. This strain also showed good growth at a wide range of temperatures (from 4 to 45 °C) and a wide range of pH (2–12), even in the presence of 3.5% NaCl. Its viability was also good after lyophilisation and in simulated gastric and small intestinal juice. The strain is a promising probiotic, and our further research will focus on its application in the biopreservation of fresh fish and shellfish.
Collapse
Affiliation(s)
- Iva Čanak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Ena Melvan
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mattea Živković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Manuela Zadravec
- Croatian Veterinary Institute, Savska 143, HR-10000 Zagreb, Croatia
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska 143, HR-10000 Zagreb, Croatia
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Deni Kostelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Lešić T, Pleadin J, Krešić G, Vahčić N, Markov K, Vrdoljak M, Frece J. Chemical and fatty acid composition of cow and sheep milk cheeses in a lamb skin sack. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2015.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|