1
|
Thu Bui HT, Thanh Dang LT, Nguyen HT, Le LT, Tran HQ, Thu Nguyen TT. Synergic effect and biosafety of chitosan/zinc complex nanoparticle-based carboxymethyl cellulose coatings for postharvest strawberry preservation. RSC Adv 2025; 15:15539-15549. [PMID: 40365200 PMCID: PMC12067194 DOI: 10.1039/d5ra00140d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Nanotechnology represents a burgeoning field that revolutionizes various industries and sectors, including food applications. In this study, chitosan nanoparticles (CS NPs), zinc oxide nanoparticles (ZnO NPs), and chitosan-zinc complex nanoparticles (CS/Zn NPs) were prepared and incorporated into carboxymethyl cellulose (CMC) coatings to examine their strawberry preservation efficiency. CS NPs, synthesized via ionic gelation, appeared with a spherical shape and a relatively uniform size below 50 nm. ZnO NPs, produced through a green electrochemical method, formed larger aggregates. CS/Zn NPs were formed due to the chelation of CS NPs with Zn2+ present in the fresh zinc electrochemical solution. In antibacterial tests against Escherichia coli and Staphylococcus aureus, CS/Zn NPs exhibited significantly lower MIC and MBC values compared to CS NPs and ZnO NPs individually, indicating a synergistic antibacterial effect between the components. CMC coatings containing these nanoparticles were applied to strawberry surfaces and the fruits were stored at room temperature (25 °C) and in a refrigerator (5 °C). The CS/Zn-CMC coating demonstrated the most pronounced effect in preventing weight loss and decrease of titratable acidity (TA) and ascorbic acid (AA) content over storage. It effectively preserved the original appearance of strawberries, delaying browning until day 15, while the control and other coated samples were completely spoiled within this period. The cytotoxicity assessment indicated the safety of CS/ZnO-CMC coating, suggesting its potential application in fruit preservation.
Collapse
Affiliation(s)
- Ha Thi Thu Bui
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Le Thi Thanh Dang
- Faculty of Chemistry and Environment, Thuyloi University Hanoi 11500 Vietnam
| | - Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biomedical Sciences, Phenikaa University Hanoi 12116 Vietnam
| | - Le Thi Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biomedical Sciences, Phenikaa University Hanoi 12116 Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
2
|
Hassan AM, Altemimi AB, Ghanbarzadeh B, Adun P, Arab K, Ibrahim S, Awlqadr FH, Hesarinejad MA, Abedelmaksoud TG. Extending the Shelf Life of Strawberries: Physicochemical and Antibacterial Effects of Carboxymethyl Cellulose and Gelatin Coatings With Lemon Essential Oil. Food Sci Nutr 2025; 13:e70222. [PMID: 40313802 PMCID: PMC12041665 DOI: 10.1002/fsn3.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Edible coatings are a thin layer of substances that are put on the surface of food. This work was designed to investigate strawberry coating prepared of carboxymethyl cellulose (CMC), gelatin (G) enriched with lemon essential oil (LEO) in various concentrations (0.5%, 1.5%, 3%), on the antimicrobial characteristics, shelf life, physicochemical, and sensory properties of strawberries preserved for 16 days at 4°C ± 1°C and an RH of 85% ± 5%. It was found that adding LEO to the CMC + G coating inhibited yeast and mold growth as well as decreased weight loss. The total flavonoid (TF), total phenol content (TPC), ascorbic acid, and antioxidant activity (AOA) all decreased slowly. Furthermore, the CMC + G + LEO combination reduced fruit deterioration due to respiration-related cell wall degradation and delayed titratable acidity (TA); pH changes, as well as losses of the fruit's total soluble solid (SS), were decreased. Likewise, the simultaneous use of CMC, G, and LEO in the sensory assessment (texture, flavor, appearance, and over all acceptance) improved aroma and appearance in the sensory assessment of the current research employing CMC + G + LEO 3%. It also proved to be efficient in reducing firmness loss, total flavonoids, ascorbic acid, TPC, and AOA in strawberry fruits compared with the uncoated.
Collapse
Affiliation(s)
| | - Ammar B. Altemimi
- Food Science DepartmentCollege of Agriculture, University of BasrahIraq
- College of Medicine, University of Warith Al‐AnbiyaaKarbalaIraq
| | - Babak Ghanbarzadeh
- Faculty of Agriculture, Department of Food Science and TechnologyUniversity of TabrizIran
- Faculty of Engineering, Department of Food EngineeringNear East UniversityMersinTurkey
| | - Perihan Adun
- Faculty of Engineering, Department of Food EngineeringNear East UniversityMersinTurkey
| | - Khaled Arab
- Faculty of Agriculture, Department of Food Science and TechnologyUniversity of TabrizIran
| | - Sonya Ibrahim
- Faculty of Science, Department of ChemistryUniversity of GarmianIraq
| | - Farhang Hameed Awlqadr
- Food Science and Quality ControlHalabja Technical College, Sulaimani Polytechnic UniversitySulaymaniyah ‐Iraq
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive ScienceResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | | |
Collapse
|
3
|
Iñiguez-Moreno M, González-González RB. Effect of gelatin and salicylic acid incorporated in chitosan coatings on strawberry preservation. Int J Biol Macromol 2025; 305:140918. [PMID: 39954885 DOI: 10.1016/j.ijbiomac.2025.140918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Strawberries are highly prone to rapid post-harvest deterioration due to their high nutritional content and lack of protective peel, demanding the development of alternative preservation methods. This study evaluates chitosan (CH) edible coatings enhanced with gelatin (GE) and salicylic acid (SA) for extending shelf life while maintaining fruit quality. Through atomic force microscopy, it was demonstrated that GE and SA showed increased surface roughness, besides improved the ultraviolet barrier properties and reduced water vapor permeability. Over 14 days of storage (3.0 ± 1.0 °C), all coatings minimized weight loss, firmness reduction, and color changes while delaying total soluble solids and pH increases. The effectiveness of the CH (0.8 %) with GE (0.2 %) and SA (2 mM) coating was mainly determined by the reduction of the development of natural disease development (84.30 ± 3.62 %), whereas the physicochemical properties tend to be similar in the assessed formulations. Principal Component Analysis (PCA) was used to investigate the effects of the treatments on strawberry shelf life and to determine the correlations between the responses studied. Considering the variability of the dimensions of the responses, correlation coefficients were used to form the matrix and extract the eigenvalue. PCA showed that the properties of the strawberries change continuously regardless of the treatments and indicated that four principal components accounted for 82.7 % of data variability. This study demonstrates that coatings, combined with cold storage, offer an effective solution for extending the shelf life of strawberries while preserving their quality throughout storage.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| |
Collapse
|
4
|
Nazoori F, Karimi A, Lotfi A, Esmaeilizadeh M. Protecting nutritional value and antioxidant compounds in fresh apricot fruit with low-temperature storage and carboxymethyl cellulose treatments. J Food Sci 2025; 90:e70068. [PMID: 40331736 DOI: 10.1111/1750-3841.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 05/08/2025]
Abstract
The objective of this study was to examine the impact of various concentrations (0%, 0.5%, 1%, and 1.5%) of carboxymethyl cellulose (CMC) on the quality of fresh and stored apricots (Felkeeii cultivar) during cold storage (2 ± 0.5°C). At intervals of 0, 8, 16, and 24 days, evaluations were performed on the antioxidant compounds, sensory attribute and postharvest quality of the apricots. According to the findings, the control sample exhibited the highest weight loss (7.6%) after 24 days of storage, while CMC 1% had the lowest weight loss on the 16th days. After 24 days of storage, the control treatment showed a 42.5% decrease in tissue firmness compared to CMC 1.5%. After a 24 day of storage period, control sample demonstrated the highest amounts of carotenoids and anthocyanins. All CMC treatments compare to the control, displayed the highest peroxidase activity, polyphenol oxidase activity, and total phenols, flavonoids, vitamin C, and antioxidant activity, while also preserving taste index, total acid, and firmness. During the storage period, the highest chilling injury (3%) and decay (2.5%) were observed in control sample. Although chilling injury and decay (2%) were low in CMC treatments, it is suggested, based on this study and comparisons with other research, to use CMC in combination with other food coatings and antioxidant compounds to manage chilling injury, decay, and maintain of quantitative and qualitative indicators. According to the research results, apricots treated with CMC 1% maintained the quantitative and qualitative characteristics of apricot fruit for 24 days in cold storage.
Collapse
Affiliation(s)
- Fatemeh Nazoori
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abbas Karimi
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Azam Lotfi
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Majid Esmaeilizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
5
|
Molina D, Marinas IC, Angamarca E, Hanganu A, Stan M, Chifiriuc MC, Tenea GN. Postbiotic-Based Extracts from Native Probiotic Strains: A Promising Strategy for Food Preservation and Antimicrobial Defense. Antibiotics (Basel) 2025; 14:318. [PMID: 40149128 PMCID: PMC11939163 DOI: 10.3390/antibiotics14030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The deterioration of food quality and safety is often linked to the presence of pathogenic and spoilage microorganisms. Postbiotics, including organic acids, enzymes, and bacteriocins produced by lactic acid bacteria (LAB), have emerged as promising next-generation food preservatives. This study investigates the biological and physicochemical properties of several postbiotic-based extracts (PBEs) comprising cell-free supernatant (CFS) and exopolysaccharide (EPS) fractions derived from three native probiotic strains: Lactiplantibacillus plantarum UTNGt2, Lactococcus lactis UTNGt28, and Weissella cibaria UTNGt21O. Methods: The antibacterial activity of these PBEs was assessed against multidrug-resistant Escherichia coli L1PEag1. Moreover, the antioxidant capacity and cytotoxicity along with the characterization of these formulations was assessed. Results: FU6 (CFS UTNGt28: EPS UTNGt2) and FU13 (CFS UTNGt21O) were found as the most potent formulations. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed dose- and time-dependent damage to the bacterial membrane and cell wall. FU6 exhibited superior antioxidant activity and lacked hemolytic effects, whereas both FU6 and FU13 induced cell-specific responses in HEK293 (human kidney) and HT-29 (intestinal mucus-producing) cell lines. Furthermore, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy identified characteristic absorption bands corresponding to proteins, lipids, carbohydrates, and nucleic acids, while proton nuclear magnetic resonance (1H-NMR) spectroscopy revealed key monosaccharides, amino acids, and metabolites such as lactate and acetate within the extracts. Conclusions: FU6 and FU13 demonstrate potential as safe and effective postbiotic formulations at non-concentrated doses. However, further research is required to elucidate their molecular composition comprehensively and evaluate their applicability for broader and long-term use in food preservation and pharmaceutical development.
Collapse
Affiliation(s)
- Diana Molina
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Evelyn Angamarca
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Anamaria Hanganu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
- “C. D. Nenitzescu” Institute of Organic, Supramolecular Chemistry of the Romanian Academy, 060023 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| |
Collapse
|
6
|
Kamilari E, O'Connor PM, de Farias FM, Johnson CN, Buttimer C, Deliephan A, Hill D, Fursenko O, Wiese J, Stanton C, Hill C, Ross RP. Bacillus safensis APC 4099 has broad-spectrum antimicrobial activity against both bacteria and fungi and produces several antimicrobial peptides, including the novel circular bacteriocin safencin E. Appl Environ Microbiol 2025; 91:e0194224. [PMID: 39745440 PMCID: PMC7617318 DOI: 10.1128/aem.01942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Bacillus safensis APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites. Specifically, a novel, anionic, 6 kDa circular bacteriocin, named safencin E, was detected, showing 52.5% similarity to butyrivibriocin AR10. Additionally, gene clusters coding for the biosynthesis of bacteriocins such as pumilarin and plantazolicin and biosynthetic pathways for secondary metabolites, including pumilacidin A, bacilysin, and bacillibactin, were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis detected molecular masses correlating to safencin E, plantazolicin, pumilarin, and pumilacidin A from the cell-free supernatant, cell extracts, or both. Overall, the broad-spectrum antimicrobial activity of B. safensis APC 4099 indicates that this strain is a promising candidate for the biological control of food ecosystems and thus has the potential to enhance food safety. IMPORTANCE The present article highlights the importance of the strain Bacillus safensis APC 4099 as a potential biocontrol agent. The strain possesses biosynthetic gene clusters coding for various antimicrobial peptides and secondary metabolites, including a novel circular bacteriocin, safencin E, and the bacteriocins pumilarin and plantazolicin. This diversity in the production of antimicrobial peptides renders the producer with broad-spectrum antimicrobial activity, ranging from gram-positive pathogenic and spoilage bacteria to spoilage molds. Considering that 1.3 billion tons of food appropriate for human consumption is lost or wasted annually, identifying strains or novel antimicrobial peptides capable of biopreservation is highly relevant. This strain and its bioactive compounds offer a solution to this global problem as biocontrol agents for food ecosystems against spoilage and pathogenic microbes.
Collapse
Affiliation(s)
- E. Kamilari
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - P. M. O'Connor
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - F. Miceli de Farias
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - C. N. Johnson
- Department of Biochemistry & Microbiology, Center for Health Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - C. Buttimer
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - A. Deliephan
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - D. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - O. Fursenko
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - J. Wiese
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - C. Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
7
|
Todorov SD, de Almeida BM, Lima EMF, Fabi JP, Lajolo FM, Hassimotto NMA. Phenolic Compounds and Bacteriocins: Mechanisms, Interactions, and Applications in Food Preservation and Safety. Mol Nutr Food Res 2025; 69:e202400723. [PMID: 39828980 DOI: 10.1002/mnfr.202400723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Beneficial properties of different natural antimicrobials are topics of scientific curiosity for improving safety and extending the shelf life of food commodities. In this regard, phenolic compounds, natural molecules known for their antioxidant, anti-inflammatory, and antimicrobial properties can be right choice. Moreover, bacteriocins, antimicrobial peptides produced by various microorganisms, capable of inhibiting the growth of other bacteria, particularly closely related species can be genuine alternative. Combining phenolic compounds with bacteriocins can enhance antimicrobial effects, extending the shelf-life of food products by combating spoilage and foodborne pathogens. Despite their potential, the chemical interactions between phenolic compounds and bacteriocins, including synergistic and antagonistic effects, are not well understood. Key areas needing further research include the following: the mechanisms of action against different bacterium types, interactions with cell membranes, enzyme activity, and gene expression; the effects of environmental factors like concentration, pH, temperature, and food matrix specificity on their interactions; and methods for incorporating these compounds into food products and packaging materials to improve food safety. Additionally, the safety, toxicity, allergenicity, sensory properties, nutritional value, regulatory approval, and consumer acceptance of using phenolic compounds and bacteriocins in food products require thorough investigation.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Beatriz Marinho de Almeida
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emília Maria França Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Ranasinghe R, Wijesekara W, Senanayake SA, Perera P, Pathmalal MM, Marapana R. Preservation of strawberries using jellyfish gelatin-based biodegradable films and coatings under refrigerated storage. FOOD SCI TECHNOL INT 2024:10820132241298487. [PMID: 39558639 DOI: 10.1177/10820132241298487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
This study investigated the applicability of the biodegradable films and coatings prepared from gelatin extracted from jellyfish Acromitus flagellatus using two extraction methods; conventional hot water extraction and microwave-assisted extraction, for the preservation of strawberries under refrigerated storage (4 °C), compared to biodegradable films and coatings prepared from analytical grade cold water fish skin gelatin and porcine skin gelatin. After 21 days of storage, uncoated strawberries (control group) exhibited visual decay and fungal attacks while coated or film-wrapped strawberries exhibited a better appearance. Coating or wrapping with gelatin films significantly reduced the weight loss of strawberries and the changes in color, hardness, moisture content, pH, titratable acidity, and total soluble solids of coated/film-wrapped fruits during storage were minimal compared to the uncoated fruits. Of the treated groups, the weight loss of gelatin-coated strawberries was significantly lower compared to the fruits wrapped with corresponding gelatin films, in all gelatin types. Furthermore, strawberries coated or wrapped with jellyfish gelatin-based films exhibited comparable properties to the fruits that were coated or wrapped with other two types of gelatin films, indicating the potential use of gelatin extracted from jellyfish in biodegradable films or coating applications in the food industry.
Collapse
Affiliation(s)
- Rasn Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Wli Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S A Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Prd Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M M Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Rauj Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
9
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
10
|
Torres-García JR, Leonardo-Elias A, Angoa-Pérez MV, Villar-Luna E, Arias-Martínez S, Oyoque-Salcedo G, Oregel-Zamudio E. Bacillus subtilis Edible Films for Strawberry Preservation: Antifungal Efficacy and Quality at Varied Temperatures. Foods 2024; 13:980. [PMID: 38611287 PMCID: PMC11011878 DOI: 10.3390/foods13070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Fungal infestations, particularly from Rhizopus stolonifer, pose significant post-harvest challenges for strawberries, compromising their shelf life and quality. Traditional preservation methods, including refrigeration, offer limited protection against such pathogens. This study introduces an innovative approach, utilizing edible films infused with Bacillus subtilis strains GOS 01 B-67748 and HFC 103, known for their antifungal properties. We demonstrate that these bioactive films not only inhibit fungal growth effectively but also enhance the preservation of strawberries at varying temperatures. The inclusion of Bacillus subtilis in edible films represents a significant advancement in extending the viability of strawberries, surpassing the efficacy of conventional methods. Our findings suggest a promising avenue for natural, safe food preservation techniques, aligning with current consumer preferences for additive-free products. This research contributes to the broader understanding of microbial-based food preservation strategies, offering potential applications across a range of perishable commodities.
Collapse
Affiliation(s)
- Jesús Rubén Torres-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
- Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnología (CONAHCYT), México City 03940, Mexico
| | - Arnulfo Leonardo-Elias
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
| | - María Valentina Angoa-Pérez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
| | - Edgar Villar-Luna
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
| | - Sergio Arias-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
| | - Guadalupe Oyoque-Salcedo
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
- Tecnológico Nacional de México, Instituto Tecnológico de Roque, Carretera Celaya—Juventino Rosas Km. 8, Celaya 38110, Guanajuato, Mexico
| | - Ernesto Oregel-Zamudio
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.R.T.-G.); (A.L.-E.); (M.V.A.-P.); (E.V.-L.); (S.A.-M.)
| |
Collapse
|
11
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
12
|
Muthuvelu KS, Ethiraj B, Pramnik S, Raj NK, Venkataraman S, Rajendran DS, Bharathi P, Palanisamy E, Narayanan AS, Vaidyanathan VK, Muthusamy S. Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Sci Biotechnol 2023; 32:1337-1350. [PMID: 37457405 PMCID: PMC10348988 DOI: 10.1007/s10068-023-01336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.
Collapse
Affiliation(s)
- Kirupa Sankar Muthuvelu
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077 India
| | - Shreyasi Pramnik
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - N. Keerthish Raj
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Elakiya Palanisamy
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Anusri Sathiya Narayanan
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Shanmugaprakash Muthusamy
- Downstream Processing Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| |
Collapse
|
13
|
Salmas CE, Kollia E, Avdylaj L, Kopsacheili A, Zaharioudakis K, Georgopoulos S, Leontiou A, Katerinopoulou K, Kehayias G, Karakassides A, Proestos C, Giannakas AE. Thymol@Natural Zeolite Nanohybrids for Chitosan/Polyvinyl-Alcohol-Based Hydrogels Applied as Active Pads. Gels 2023; 9:570. [PMID: 37504449 PMCID: PMC10379368 DOI: 10.3390/gels9070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Currently, food saving, a circular economy, and zero environmental fingerprints are of major interest. Scientific efforts for enhanced food preservation using "green" methods have been intensified. Even though chemicals could achieve such targets effectively, the global trend against the "greenhouse effect" suggests the use of environmentally friendly biobased materials for this purpose. In this study, the promising biopolymer chitosan is incorporated with the promising biodegradable polymer polyvinyl alcohol to produce an improved biopolymeric matrix. This biodegradable biopolymer was further mixed homogeneously with 15% thymol/nano-zeolite nanohybrid material. The properties of the final developed film were improved compared to the relevant values of chitosan/polyvinyl alcohol film. The mechanical properties were enhanced significantly, i.e., there was a 34% increase in Young's modulus and a 4.5% increase in the ultimate tensile strength, while the antioxidant activity increased by 53.4%. The antibacterial activity increased by 134% for Escherichia coli, 87.5% for Staphylococcus aureus, 32% for Listeria monocytogenes, and 9% for Salmonella enterica. The water vapor diffusion coefficient and the oxygen permeability coefficient decreased to -51% and -74%, respectively, and thus, the water vapor and oxygen barrier increased significantly. The active pads were used in strawberries, and the antimicrobial activity evaluation against the mold of fungi was carried out. The visual evaluation shows that the active pads could extend the shelf life duration of strawberries.
Collapse
Affiliation(s)
- Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | | | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Anastasios Karakassides
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
14
|
Hadimani S, Supriya D, Roopa K, Soujanya SK, Rakshata V, Netravati A, Akshayakumar V, De Britto S, Jogaiah S. Biodegradable hybrid biopolymer film based on carboxy methyl cellulose and selenium nanoparticles with antifungal properties to enhance grapes shelf life. Int J Biol Macromol 2023; 237:124076. [PMID: 36934815 DOI: 10.1016/j.ijbiomac.2023.124076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
In the current study, cellulose was extracted from sugarcane bagasse and further converted into carboxy methyl cellulose. The morphological, chemical, and structural characterization of synthesizeed carboxy methyl cellulose was performed. Further, the biopolymer was fabricated with mycogenic selenium nanoparticles and used to develop the biopolymer films. The developed biopolymer films were examined for the fruit shelf life stability, antifungal activity, and biodegradation potential. The results revealed that grapes wrapped with biofilms showed enhanced shelf life of fruit at all storage time intervals. The study also witnesses the antifungal activity of biopolymer films with a remarkable inhibitory action on the spores of Fusarium oxysporum and Sclerospora graminicola phytopathogens. Lastly, the biopolymer films were significantly degradable in the soil within two weeks of incubation. Thus, the developed biopolymer films exhibit multifaceted properties that can be used as an alternative to synthetic plastics for fruit packaging and also helps in protecting against fungal contaminants during storage with naturally degradable potential.
Collapse
Affiliation(s)
- Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Dodamani Supriya
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Koliwad Roopa
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Shivanna K Soujanya
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Vandakuduri Rakshata
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Avaradi Netravati
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Vijayakumar Akshayakumar
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316 Kasaragod (DT), Kerala, India.
| |
Collapse
|
15
|
Wójcicki M, Świder O, Gientka I, Błażejak S, Średnicka P, Shymialevich D, Cieślak H, Wardaszka A, Emanowicz P, Sokołowska B, Juszczuk-Kubiak E. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses 2023; 15:172. [PMID: 36680211 PMCID: PMC9860863 DOI: 10.3390/v15010172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
This study aimed to evaluate the effectiveness of the phage cocktail to improve the microbiological quality of five different mixed-leaf salads: rucola, mixed-leaf salad with carrot, mixed-leaf salad with beetroot, washed and unwashed spinach, during storage in refrigerated conditions. Enterobacterales rods constituted a significant group of bacteria in the tested products. Selected bacteria were tested for antibiotic resistance profiles and then used to search for specific bacteriophages. Forty-three phages targeting bacteria dominant in mixed-leaf salads were isolated from sewage. Their titer was determined, and lytic activity was assessed using the Bioscreen C Pro automated growth analyzer. Two methods of phage cocktail application including spraying, and an absorption pad were effective for rucola, mixed leaf salad with carrot, and mixed leaf salad with beetroot. The maximum reduction level after 48 h of incubation reached 99.9% compared to the control sample. In washed and unwashed spinach, attempts to reduce the number of microorganisms did not bring the desired effect. The decrease in bacteria count in the lettuce mixes depended on the composition of the autochthonous saprophytic bacteria species. Both phage cocktail application methods effectively improved the microbiological quality of minimally processed products. Whole-spectral phage cocktail application may constitute an alternative food microbiological quality improvement method without affecting food properties.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
16
|
Combinations of Peptide-Protein Extracts from Native Probiotics Suppress the Growth of Multidrug-Resistant Staphylococcus aureus and Citrobacter freundii via Membrane Perturbation and Ultrastructural Changes. Antibiotics (Basel) 2022; 11:antibiotics11020154. [PMID: 35203757 PMCID: PMC8868453 DOI: 10.3390/antibiotics11020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
The occurrence of multidrug-resistant pathogens in the food chain causes health problems in humans, thus, research for novel antimicrobials to combat their growth is of interest. This study evaluates the antimicrobial potential of several combinations of peptide-protein extracts (PCs) consisting of peptide extracts from three native probiotic strains, Lactiplantibacillus plantarum UTNGt2, Lactococcus lactis UTNGt28, and L. plantarum UTNGt21A, alone or in combination with EDTA (ethylenediaminetetraacetic acid) against multidrug-resistant Staphylococcus aureus ATCC1026 and Citrobacter freundii UTNB3Sm1. Based on the antimicrobial assay, among the 19 tested PCs, two (PC11 and PC17) produced a greater zone of inhibition against both pathogens in vitro. Time-killing assays indicated the rapid death of S. aureus after exposure to PC11 and PC17, while C. freundii was rapidly inhibited by PC11 and PC1 (UTNGt2 only), suggesting that the inhibitory action is pathogen and dose-dependent of a particular molecule present in the extract. A marginal inhibitory effect was observed when the peptides were combined with EDTA. Transmission electron microscopy (TEM) revealed the structural membrane damage of both target strains upon interaction with individual peptide extracts. Different degrees of cell deformation, condensed cytoplasm, membrane blebbing, and ghost cell formation with visibly broken cell walls were observed in S. aureus. Likewise, the separation of the cytoplasmic membrane from the outer membrane, ghost cells, along with ovoid and deformed cells with undulated cell walls were observed for C. freundii. Furthermore, scanning electronic microscopy (SEM) analysis revealed different wrinkled and deformed cells covered by debris. A leakage of aromatic molecules was detected for both pathogens, indicating that PCs disrupted the cell wall integrity, inducing cell death. Given their inhibitory action and capacity to induce damage of the cytoplasmic membrane, the selected PCs may serve to slow bacterial growth in vitro; further research is required to prove their efficiency ex vitro to battle against food poisoning and subsequent human infection.
Collapse
|
17
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Shrivastav S, Ganorkar PM, Prajapati KM, Patel DB. Drying kinetics, heat quantities, and physiochemical characteristics of strawberry puree by Refractance Window drying system. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shivmurti Shrivastav
- Department of Food Processing Technology A.D. Patel Institute of Technology Anand Gujarat India
| | - Pravin M. Ganorkar
- Department of Food Processing Technology A.D. Patel Institute of Technology Anand Gujarat India
| | - Krupal M. Prajapati
- Department of Food Processing Technology A.D. Patel Institute of Technology Anand Gujarat India
| | - Devansh B. Patel
- Department of Food Processing Technology A.D. Patel Institute of Technology Anand Gujarat India
| |
Collapse
|
19
|
Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, Lorenzo JM. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Antimicrobial Cocktail Combining Specific Peptide Extracts from Native Probiotic Bacteria Hamper Adulteration of Ready-to-Eat Mango Wedges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Consumption of ready-to-eat chopped fruits sold in the streets is a concern, as such activities are outside the regulation and protection in most developing countries. Ready-to-eat mangos are commonly sold as wedges in plastic cups at ambient temperature by mobile vendors in Ecuador, thus they are prone to contamination by bacteria, which poses a safety issue of concern. This work aimed to evaluate the effect of several antimicrobial cocktails consisting of previously designed specific peptide extract combinations from two probiotic bacteria Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis UTNGt28, along with nisin, a commercial food additive, on mango wedges artificially inoculated with a logarithmic phase culture of a five-strain bacterial mixture (FSBM). Preliminary bacteriological analysis of mango wedges purchased from mobile vendors showed the presence of multiple antibiotic-resistant isolates such E. coli spp., Enterobacter spp., Shigella spp., Salmonella spp., along with yeasts and molds, indicating non-compliance with the food safety standards. The results revealed that two antimicrobial cocktails, T2 and T5, containing cell-free supernatant based (CFS) and precipitated peptides (PP) based cocktails from UTNCys5-4 and UTNGt28 strains applied at dose 1:3 (v/v), were the most efficient combinations that inhibited the colonization of total bacterial counts with 56.03% and 55.61% in mango wedges stored with refrigeration. The reduction of total E. coli counts was 64.93%, while Salmonella and Shigella counts were reduced by 98.09% and 97.93%, respectively, when mango wedges were treated with T5-cocktail. The commercial nisin inhibited total Salmonella spp. counts by 40.13%, while E. coli spp. and Shigella spp. diminished by 28.20% and 37.22%, respectively. Moreover, we showed that T5 but not T7 (nisin) damaged the target cell integrity, thereby eventually inhibiting their growth and reproduction. The selected antimicrobial cocktails exerted a bacteriolytic effect by killing the FSBM simultaneously in a fruit matrix and preventing their accumulation in mango wedges. Furthermore, there is a possibility of using peptide combinatorial treatments to combat drug-resistant bacteria in ready-to-eat fruits.
Collapse
|
21
|
Pirozzi A, Pataro G, Donsì F, Ferrari G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combination when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting the treatment conditions and the product shelf-life improvement.
Collapse
|
22
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
23
|
Effect of Nano-Edible Coating Based on Beeswax Solid Lipid Nanoparticles on Strawberry’s Preservation. COATINGS 2020. [DOI: 10.3390/coatings10030253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Edible nano-coatings were applied in strawberry with the end goal of preserving quality by 21 days of storage at 4 °C. The beeswax solid lipid nanoparticles (BSLN) were prepared by high-energy homogenization, BSLN had a monomodal dispersion with average particle sizes of 214–227 nm and zeta potential of −30 mV. Four coatings were tested: 0, 10, 20, and 30 g/L of BSLN dispersion, all these edible coatings contained xanthan gum (XG) (3 g/L) and propylene glycol (5 g/L) and contrasted with strawberries without any treatment. The best behavior was achieved with 10 g/L of BSLN showing the lowest weight loss (6.1%), a decay index of (31%), loss of firmness (34%), and ΔE = 11. It was established that a concentration of 30 g/L of BSLN caused physiological damage. Based on the findings found, it can be said that nano-coatings with 10 g/L of BSLN-XG are an excellent alternative in the conservation and to increase of shelf life of strawberry stored in refrigeration. In the present case, it was 10 g/L of BSL. Highlighting the importance to evaluate the best concentration in relation to the fruit characteristics.
Collapse
|
24
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|