1
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Salimnejhad Z, Hassanzadazar H, Aminzare M. Epinecidin-1 (an active marine antimicrobial peptide): Effects on the survival of inoculated Escherichia Coli O157:H7 And Staphylococcus aureus bacteria, antioxidant, and sensory attributes in raw milk. Food Sci Nutr 2023; 11:5573-5581. [PMID: 37701235 PMCID: PMC10494623 DOI: 10.1002/fsn3.3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
This study aimed to evaluate the effects of Epinecidin-1 (Epi-1) on total viable count (TVC), total psychrotrophic count (TPC), sensory attributes, and the survival of Escherichia Coli O157:H7 and Staphylococcus aureus bacteria inoculated in pasteurized milk samples during cold storage (4°C). Four treatments of milk samples were prepared including milk samples containing three concentrations of Epi-1 (0.0025, 0.005, and 0.01%) and control (without Epi-1). The treated milk samples were evaluated in vitro (minimum inhibitory concentration, Minimum bactericidal concentration, disk diffusion test, DPPH, reducing power assays) and in vivo (TVC, TPC, sensory properties, and enumeration of inoculated E. coli and S. aureus) during 9 days at cold storage. The best antibacterial and antioxidant power of Epi-1 was observed at a concentration of 0.01%. Based on the MICs and MBCs, the most susceptible and resistant bacteria to Epi-1 were B. cereus and S. aureus strains, respectively. The DPPH scavenging potential of Epi-1 was in the range of 77%-80%. Treated samples containing 0.01% Epi-1 had the lowest TVC and TPC and reached 3.9 and 2.96 CFU log/mL at the end day of storage. A decrease of 6 and 1.4 logs CFU/g of E. coli O157:H7 and S. aureus was seen in all treatments containing Epi-1, respectively, on the last day of storage period. There are no unpleasant sensory properties in treated samples with Epi-1. Our results indicate that Epi-1 has good potential as a bio-preservative to prevent raw milk spoilage and reduction of milk-borne pathogens.
Collapse
Affiliation(s)
- Ziba Salimnejhad
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
3
|
Silva BN, Teixeira JA, Cadavez V, Gonzales-Barron U. Mild Heat Treatment and Biopreservatives for Artisanal Raw Milk Cheeses: Reducing Microbial Spoilage and Extending Shelf-Life through Thermisation, Plant Extracts and Lactic Acid Bacteria. Foods 2023; 12:3206. [PMID: 37685139 PMCID: PMC10486694 DOI: 10.3390/foods12173206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
5
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
6
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
7
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
9
|
Ansari A, Ibrahim F, Haider MS, Aman A. In vitro application of bacteriocin produced by
Lactiplantibacillus plantarum
for the biopreservation of meat at refrigeration temperature. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE) University of Karachi Karachi Pakistan
| | - Fariha Ibrahim
- Department of Biomedical Engineering Ziauddin University Karachi Pakistan
| | - Muhammad Samee Haider
- Food and Marine Resources Research Centre (FMRRC), Pakistan Council of Scientific and Industrial Research (PCSIR) Karachi Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE) University of Karachi Karachi Pakistan
| |
Collapse
|
10
|
Susceptibility to Nisin, Bactofencin, Pediocin and Reuterin of Multidrug Resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis Causing Bovine Mastitis. Antibiotics (Basel) 2021; 10:antibiotics10111418. [PMID: 34827356 PMCID: PMC8614789 DOI: 10.3390/antibiotics10111418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are the most effective strategy to prevent and treat intramammary infections. However, their misuse has led to the dissemination of multidrug resistant bacteria (MDR) for both animals and humans. Efforts to develop new alternative strategies to control bacterial infections related to MDR are continuously on the rise. The objective of this study was to evaluate the antimicrobial activity of different bacteriocins and reuterin against MDR Staphylococcus and Streptococcus clinical isolates involved in bovine mastitis. A bacterial collection including S. aureus (n = 19), S. dysgalactiae (n = 17) and S. uberis (n = 19) was assembled for this study. Antibiotic resistance profiles were determined by the disk diffusion method. In addition, sensitivity to bacteriocins and reuterin was evaluated by determining minimum inhibitory concentrations (MIC). A total of 21 strains (37.5%) were MDR. MICs ranged from ≤1.0 μg/mL to ≥100 μg/mL for nisin and 2.0 to ≥250 μg/mL for bactofencin. Reuterin was active against all tested bacteria, and MICs vary between 70 and 560 μg/mL. Interestingly, 20 MDR strains were inhibited by bactofencin at a concentration of ≤250 μg/mL, while 14 were inhibited by nisin at an MIC of ≤100 μg/mL. Pediocin did not show an inhibitory effect.
Collapse
|