1
|
Andonegi M, Correia D, Pereira N, Salado M, Costa CM, Lanceros-Mendez S, de la Caba K, Guerrero P. Sustainable Collagen Blends with Different Ionic Liquids for Resistive Touch Sensing Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:5986-5998. [PMID: 37091126 PMCID: PMC10114605 DOI: 10.1021/acssuschemeng.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Considering the sustainable development goals to reduce environmental impact, sustainable sensors based on natural polymers are a priority as the large im plementation of these materials is required considering the Internet of Things (IoT) paradigm. In this context, the present work reports on sustainable blends based on collagen and different ionic liquids (ILs), including ([Ch][DHP], [Ch][TSI], [Ch][Seri]) and ([Emim][TFSI]), processed with varying contents and types of ILs in order to tailor the electrical response. Varying IL types and contents leads to different interactions with the collagen polymer matrix and, therefore, to varying mechanical, thermal, and electrical properties. Collagen/[Ch][Seri] samples display the most pronounced decrease of the tensile strength (3.2 ± 0.4 MPa) and an increase of the elongation at break (50.6 ± 1.5%). The best ionic conductivity value of 0.023 mS cm-1 has been obtained for the sample with 40 wt % of the IL [Ch][Seri]. The functional response of the collagen-IL films has been demonstrated on a resistive touch sensor whose response depends on the ionic conductivity, being suitable for the next generation of sustainable touch sensing devices.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT
Research Group, University of the Basque
Country (UPV/EHU), Escuela
de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Daniela Correia
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Nelson Pereira
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
| | - Manuel Salado
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT
Research Group, University of the Basque
Country (UPV/EHU), Escuela
de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pedro Guerrero
- BIOMAT
Research Group, University of the Basque
Country (UPV/EHU), Escuela
de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Proteinmat
Materials SL, Avenida
de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Samoraj M, Mironiuk M, Izydorczyk G, Witek-Krowiak A, Szopa D, Moustakas K, Chojnacka K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. CHEMOSPHERE 2022; 295:133799. [PMID: 35114259 DOI: 10.1016/j.chemosphere.2022.133799] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The increase in livestock production creates a serious problem of managing animal waste and by-products. Among the wide range of waste valorization methods available, anaerobic digestion is very promising. It is a form of material recycling that also produces renewable energy in the form of biogas, which is reminiscent of energy recycling. The effluent and digestate from the anaerobic digestion process need to be processed further. These materials are widely used in agriculture due to their composition. Both the liquid and solid fractions of digestate are high in nitrogen, making them a valuable source for plants. Before soil or foliar application, conditioning (e.g., with inorganic acids) and neutralization (e.g., with potassium hydroxide) is required to eliminate odorous compounds and microorganisms. Various methods of conducting the process by anaerobic digestion (use of additives increasing activity of microorganisms, co-digestion, multiple techniques of substrate preparation) and the possibility of controlling process parameters such as optimal C/N ratio (15-30), optimal temperature (psychrophilic (<20 °C), mesophilic (35-37 °C) and thermophilic (55 °C) for microorganism activity ensure high efficiency of the process. Literature data describing tests of various digestates on different plants prove high efficiency, determined by yield increase (even by 28%), nitrogen uptake (by 20%) or phosphorus recovery rate (by 43%) or increase of biometric parameters (e.g., leaf area).
Collapse
Affiliation(s)
- Mateusz Samoraj
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland.
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zographou Campus, GR-15780, Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| |
Collapse
|
3
|
Yang L, Yan Y. Emerging Roles of Post-Translational Modifications in Skin Diseases: Current Knowledge, Challenges and Future Perspectives. J Inflamm Res 2022; 15:965-975. [PMID: 35177923 PMCID: PMC8846607 DOI: 10.2147/jir.s339296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins represent as a key step in regulating their biological functions and dynamic interaction with other players. This process is fine-tuned by a myriad of enzymes named “writers, readers and erasers” whose actions are precisely controlled. Either the mutation, aberration in the expression of the aforementioned enzymes or their substrates have shown to participate in the pathogenesis of various skin diseases such as melanoma, vitiligo, psoriasis, eczema, atopic dermatitis and inherited dermatological diseases. It is becoming increasingly clear that key transcriptional factors, inflammation-related molecules are prone to PTMs. Despite their importance in regulating key processes including inflammation, keratinocyte apoptosis, proliferation and differentiation, PTMs have received less attention due to the challenges involved. Here in this review we summarize the role of the most common types and the newly discovered PTMs, including acetylation, glycosylation, citrullination, PARylation and sumoylation in dermatoses and surveys the recent progress in PTM-based therapeutic approaches in skin diseases.
Collapse
Affiliation(s)
- Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
- Correspondence: Luting Yang; Yaping Yan, Email ;
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|