1
|
Xu G, Hao F, Zhao W, Qiu J, Zhao P, Zhang Q. The influential factors and non-pharmacological interventions of cognitive impairment in children with ischemic stroke. Front Neurol 2022; 13:1072388. [PMID: 36588886 PMCID: PMC9797836 DOI: 10.3389/fneur.2022.1072388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background The prevalence of pediatric ischemic stroke rose by 35% between 1990 and 2013. Affected patients can experience the gradual onset of cognitive impairment in the form of impaired language, memory, intelligence, attention, and processing speed, which affect 20-50% of these patients. Only few evidence-based treatments are available due to significant heterogeneity in age, pathological characteristics, and the combined epilepsy status of the affected children. Methods We searched the literature published by Web of Science, Scopus, and PubMed, which researched non-pharmacological rehabilitation interventions for cognitive impairment following pediatric ischemic stroke. The search period is from the establishment of the database to January 2022. Results The incidence of such impairment is influenced by patient age, pathological characteristics, combined epilepsy status, and environmental factors. Non-pharmacological treatments for cognitive impairment that have been explored to date mainly include exercise training, psychological intervention, neuromodulation strategies, computer-assisted cognitive training, brain-computer interfaces (BCI), virtual reality, music therapy, and acupuncture. In childhood stroke, the only interventions that can be retrieved are psychological intervention and neuromodulation strategies. Conclusion However, evidence regarding the efficacy of these interventions is relatively weak. In future studies, the active application of a variety of interventions to improve pediatric cognitive function will be necessary, and neuroimaging and electrophysiological measurement techniques will be of great value in this context. Larger multi-center prospective longitudinal studies are also required to offer more accurate evidence-based guidance for the treatment of patients with pediatric stroke.
Collapse
Affiliation(s)
- Gang Xu
- Rehabilitation Branch, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Fuchun Hao
- Medicine & Nursing Faculty, Tianjin Medical College, Tianjin, China
| | - Weiwei Zhao
- Chinese Teaching and Research Section, Tianjin Beichen Experimental Middle School, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Zhao
- Rehabilitation Branch, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China,*Correspondence: Peng Zhao
| | - Qian Zhang
- Child Health Care Department, Tianjin Beichen Women and Children Health Center, Tianjin, China,Qian Zhang
| |
Collapse
|
2
|
Xie YL, Yang YX, Jiang H, Duan XY, Gu LJ, Qing W, Zhang B, Wang YX. Brain-machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci 2022; 16:949575. [PMID: 35992923 PMCID: PMC9381818 DOI: 10.3389/fnins.2022.949575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper extremity dysfunction after stroke is an urgent clinical problem that greatly affects patients' daily life and reduces their quality of life. As an emerging rehabilitation method, brain-machine interface (BMI)-based training can extract brain signals and provide feedback to form a closed-loop rehabilitation, which is currently being studied for functional restoration after stroke. However, there is no reliable medical evidence to support the effect of BMI-based training on upper extremity function after stroke. This review aimed to evaluate the efficacy and safety of BMI-based training for improving upper extremity function after stroke, as well as potential differences in efficacy of different external devices. Methods English-language literature published before April 1, 2022, was searched in five electronic databases using search terms including “brain-computer/machine interface”, “stroke” and “upper extremity.” The identified articles were screened, data were extracted, and the methodological quality of the included trials was assessed. Meta-analysis was performed using RevMan 5.4.1 software. The GRADE method was used to assess the quality of the evidence. Results A total of 17 studies with 410 post-stroke patients were included. Meta-analysis showed that BMI-based training significantly improved upper extremity motor function [standardized mean difference (SMD) = 0.62; 95% confidence interval (CI) (0.34, 0.90); I2 = 38%; p < 0.0001; n = 385; random-effects model; moderate-quality evidence]. Subgroup meta-analysis indicated that BMI-based training significantly improves upper extremity motor function in both chronic [SMD = 0.68; 95% CI (0.32, 1.03), I2 = 46%; p = 0.0002, random-effects model] and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 = 76%; p = 0.01; random-effects model] stroke patients compared with control interventions, and using functional electrical stimulation (FES) [SMD = 1.11; 95% CI (0.67, 1.54); I2 = 11%; p < 0.00001; random-effects model]or visual feedback [SMD = 0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-effects model;] as the feedback devices in BMI training was more effective than using robot. In addition, BMI-based training was more effective in improving patients' activities of daily living (ADL) than control interventions [SMD = 1.12; 95% CI (0.65, 1.60); I2 = 0%; p < 0.00001; n = 80; random-effects model]. There was no statistical difference in the dropout rate and adverse effects between the BMI-based training group and the control group. Conclusion BMI-based training improved upper limb motor function and ADL in post-stroke patients. BMI combined with FES or visual feedback may be a better combination for functional recovery than robot. BMI-based trainings are well-tolerated and associated with mild adverse effects.
Collapse
Affiliation(s)
- Yu-lei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Jiang
- Department of Rehabilitation Medicine, Xichong County People's Hospital, Nanchong Central Hospital, Nanchong, China
| | - Xing-Yu Duan
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li-jing Gu
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wu Qing
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Zhang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Bo Zhang
| | - Yin-xu Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yin-xu Wang
| |
Collapse
|
3
|
Wang Z, Cao C, Chen L, Gu B, Liu S, Xu M, He F, Ming D. Multimodal Neural Response and Effect Assessment During a BCI-Based Neurofeedback Training After Stroke. Front Neurosci 2022; 16:884420. [PMID: 35784834 PMCID: PMC9247245 DOI: 10.3389/fnins.2022.884420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Stroke caused by cerebral infarction or hemorrhage can lead to motor dysfunction. The recovery of motor function is vital for patients with stroke in daily activities. Traditional rehabilitation of stroke generally depends on physical practice under passive affected limbs movement. Motor imagery-based brain computer interface (MI-BCI) combined with functional electrical stimulation (FES) is a potential active neural rehabilitation technology for patients with stroke recently, which complements traditional passive rehabilitation methods. As the predecessor of BCI technology, neurofeedback training (NFT) is a psychological process that feeds back neural activities online to users for self-regulation. In this work, BCI-based NFT were proposed to promote the active repair and reconstruction of the whole nerve conduction pathway and motor function. We designed and implemented a multimodal, training type motor NFT system (BCI-NFT-FES) by integrating the visual, auditory, and tactile multisensory pathway feedback mode and using the joint detection of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). The results indicated that after 4 weeks of training, the clinical scale score, event-related desynchronization (ERD) of EEG patterns, and cerebral oxygen response of patients with stroke were enhanced obviously. This study preliminarily verified the clinical effectiveness of the long-term NFT system and the prospect of motor function rehabilitation.
Collapse
Affiliation(s)
- Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Cong Cao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Long Chen
| | - Bin Gu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
- Dong Ming
| |
Collapse
|
4
|
Poststroke Cognitive Impairment Research Progress on Application of Brain-Computer Interface. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9935192. [PMID: 35252458 PMCID: PMC8896931 DOI: 10.1155/2022/9935192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Brain-computer interfaces (BCIs), a new type of rehabilitation technology, pick up nerve cell signals, identify and classify their activities, and convert them into computer-recognized instructions. This technique has been widely used in the rehabilitation of stroke patients in recent years and appears to promote motor function recovery after stroke. At present, the application of BCI in poststroke cognitive impairment is increasing, which is a common complication that also affects the rehabilitation process. This paper reviews the promise and potential drawbacks of using BCI to treat poststroke cognitive impairment, providing a solid theoretical basis for the application of BCI in this area.
Collapse
|
5
|
Borisova VA, Isakova EV, Kotov SV. [Possibilities of the brain-computer interface in the correction of post-stroke cognitive impairments]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:60-66. [PMID: 36582163 DOI: 10.17116/jnevro202212212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, brain-computer interfaces have been widely used in neurorehabilitation, and an extensive database of results from clinical studies conducted around the world has been accumulated, demonstrating their effectiveness in restoring motor function after a stroke. Currently, their use in post-stroke cognitive impairment is expanding. This article discusses the potential and prospects for using brain-computer interfaces for the treatment of cognitive disorders, reviews the experience of using it, presents the results of clinical studies in stroke patients, evaluates the possibilities of using this technology, describes the prospects, new directions of work on studying its effects.
Collapse
Affiliation(s)
- V A Borisova
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E V Isakova
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| | - S V Kotov
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
6
|
Wu Q, Ge Y, Ma D, Pang X, Cao Y, Zhang X, Pan Y, Zhang T, Dou W. Analysis of Prognostic Risk Factors Determining Poor Functional Recovery After Comprehensive Rehabilitation Including Motor-Imagery Brain-Computer Interface Training in Stroke Patients: A Prospective Study. Front Neurol 2021; 12:661816. [PMID: 34177767 PMCID: PMC8222567 DOI: 10.3389/fneur.2021.661816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Upper limb (UL) motor function recovery, especially distal function, is one of the main goals of stroke rehabilitation as this function is important to perform activities of daily living (ADL). The efficacy of the motor-imagery brain-computer interface (MI-BCI) has been demonstrated in patients with stroke. Most patients with stroke receive comprehensive rehabilitation, including MI-BCI and routine training. However, most aspects of MI-BCI training for patients with subacute stroke are based on routine training. Risk factors for inadequate distal UL functional recovery in these patients remain unclear; therefore, it is more realistic to explore the prognostic factors of this comprehensive treatment based on clinical practice. The present study aims to investigate the independent risk factors that might lead to inadequate distal UL functional recovery in patients with stroke after comprehensive rehabilitation including MI-BCI (CRIMI-BCI). Methods: This prospective study recruited 82 patients with stroke who underwent CRIMI-BCI. Motor-imagery brain-computer interface training was performed for 60 min per day, 5 days per week for 4 weeks. The primary outcome was improvement of the wrist and hand dimensionality of Fugl-Meyer Assessment (δFMA-WH). According to the improvement score, the patients were classified into the efficient group (EG, δFMA-WH > 2) and the inefficient group (IG, δFMA-WH ≤ 2). Binary logistic regression was used to analyze clinical and demographic data, including aphasia, spasticity of the affected hand [assessed by Modified Ashworth Scale (MAS-H)], initial UL function, age, gender, time since stroke (TSS), lesion hemisphere, and lesion location. Results: Seventy-three patients completed the study. After training, all patients showed significant improvement in FMA-UL (Z = 7.381, p = 0.000**), FMA-SE (Z = 7.336, p = 0.000**), and FMA-WH (Z = 6.568, p = 0.000**). There were 35 patients (47.9%) in the IG group and 38 patients (52.1%) in the EG group. Multivariate analysis revealed that presence of aphasia [odds ratio (OR) 4.617, 95% confidence interval (CI) 1.435-14.860; p < 0.05], initial FMA-UL score ≤ 30 (OR 5.158, 95% CI 1.150-23.132; p < 0.05), and MAS-H ≥ level I+ (OR 3.810, 95% CI 1.231-11.790; p < 0.05) were the risk factors for inadequate distal UL functional recovery in patients with stroke after CRIMI-BCI. Conclusion: We concluded that CRIMI-BCI improved UL function in stroke patients with varying effectiveness. Inferior initial UL function, significant hand spasticity, and presence of aphasia were identified as independent risk factors for inadequate distal UL functional recovery in stroke patients after CRIMI-BCI.
Collapse
Affiliation(s)
- Qiong Wu
- School of Rehabilitation Medicine, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Di Ma
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xue Pang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yingyu Cao
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xiaofei Zhang
- Department of Clinical Epidemiology and Biostatistics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Sebastián-Romagosa M, Cho W, Ortner R, Murovec N, Von Oertzen T, Kamada K, Allison BZ, Guger C. Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front Neurosci 2020; 14:591435. [PMID: 33192277 PMCID: PMC7640937 DOI: 10.3389/fnins.2020.591435] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Numerous recent publications have explored Brain Computer Interfaces (BCI) systems as rehabilitation tools to help subacute and chronic stroke patients recover upper extremity movement. Recent work has shown that BCI therapy can lead to better outcomes than conventional therapy. BCI combined with other techniques such as Functional Electrical Stimulation (FES) and Virtual Reality (VR) allows to the user restore the neurological function by inducing the neural plasticity through improved real-time detection of motor imagery (MI) as patients perform therapy tasks. Methods Fifty-one stroke patients with upper extremity hemiparesis were recruited for this study. All participants performed 25 sessions with the MI BCI and assessment visits to track the functional changes before and after the therapy. Results The results of this study demonstrated a significant increase in the motor function of the paretic arm assessed by Fugl-Meyer Assessment (FMA-UE), ΔFMA-UE = 4.68 points, P < 0.001, reduction of the spasticity in the wrist and fingers assessed by Modified Ashworth Scale (MAS), ΔMAS-wrist = -0.72 points (SD = 0.83), P < 0.001, ΔMAS-fingers = -0.63 points (SD = 0.82), P < 0.001. Other significant improvements in the grasp ability were detected in the healthy hand. All these functional improvements achieved during the BCI therapy persisted 6 months after the therapy ended. Results also showed that patients with Motor Imagery accuracy (MI) above 80% increase 3.16 points more in the FMA than patients below this threshold (95% CI; [1.47–6.62], P = 0.003). The functional improvement was not related with the stroke severity or with the stroke stage. Conclusion The BCI treatment used here was effective in promoting long lasting functional improvements in the upper extremity in stroke survivors with severe, moderate and mild impairment. This functional improvement can be explained by improved neuroplasticity in the central nervous system.
Collapse
Affiliation(s)
| | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,International Max Planck Research School for Neural & Behavioral Sciences, Tübingen, Germany
| | - Rupert Ortner
- g.tec Medical Engineering Spain SL, Barcelona, Spain
| | - Nensi Murovec
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Tim Von Oertzen
- Department of Neurology 1, Kepler Universitätsklinik, Linz, Austria
| | | | - Brendan Z Allison
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Christoph Guger
- g.tec Medical Engineering Spain SL, Barcelona, Spain.,g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|