1
|
Mushtaq M, Arshad N, Rehman A, Javed GA, Munir A, Hameed M, Javed S. Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779 can mitigate lead induced hepato-renal damage by regulating visceral dispersion and fecal excretion. World J Microbiol Biotechnol 2024; 40:74. [PMID: 38246905 DOI: 10.1007/s11274-023-03818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
Heavy metal pollution is a global issue. Current study provides evidence on Pb toxicity ameliorative potential and safe nature of Levilactobacillus brevis MZ384011 (S1) and Levilactobacillus brevis MW362779 (S2), isolated from carnivore gut and human milk, respectively. In a 60-days experiment, the rats were distributed into six groups. G-I, G-V and G-VI were kept on normal diet, while GII-IV were fed on lead nitrate (500 mg/kg) supplemented food, throughout experiment. After confirmation of Pb toxicity in GII-IV at 15th day, S1 was orally administered to G-III and G-V while S2 was given to G-IV and G-VI at a dose of 1 × 109 CFU/animal/day. On day 60 of experiment, positive control (G-II) displayed significant reduction in body weight, total protein, albumin, globulin, mineral profile, erythrocyte count, hemoglobin, hematocrit and hematological indices and elevation in leukocyte count, alanine aminotransferase, aspartate aminotransferase, bilirubin, uric acid and creatinine along with alterations in hepato-renal architecture. With reference to G-II, the G-III and G-IV displayed significant improvement in all aforementioned parameters, 40-60% reduction in tissue Pb levels (blood, liver, kidney and adipose tissue) and elevation in fecal Pb contents (p = 0.000). The groups V and VI did not show any sign of toxicity. The findings confirm that strains are safe for biological application and can reverse Pb toxicity by facilitating fecal Pb excretion and reducing its systemic dispersal. To best of our information this is the first report on Pb toxicity ameliorative role of Levilactobacillus brevis from human milk, the safest source.
Collapse
Affiliation(s)
- Maria Mushtaq
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan.
- Department of Zoology, Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), The University of Lahore, Lahore, 54792, Pakistan.
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, 54590, Pakistan
| | | | - Aneela Munir
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mamoona Hameed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saman Javed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Oner P, Er B, Orhan C, Sahin K. Combination of Phycocyanin, Zinc, and Selenium Improves Survival Rate and Inflammation in the Lipopolysaccharide-Galactosamine Mouse Model. Biol Trace Elem Res 2023; 201:1377-1387. [PMID: 36175742 DOI: 10.1007/s12011-022-03433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is related to systemic inflammation and oxidative stress, the primary causes of death in intensive care units. Severe functional abnormalities in numerous organs can arise due to sepsis, with acute lung damage being the most common and significant morbidity. Spirulina, blue-green algae with high protein, vitamins, phycocyanin, and antioxidant content, shows anti-inflammatory properties by decreasing the release of cytokines. In addition, zinc (Zn) and selenium (Se) act as an antioxidant by inhibiting the oxidation of macromolecules, as well as the inhibition of the inflammatory response. The current study aimed to examine the combined properties of Zn, Se, and phycocyanin oligopeptides (ZnSePO) against lipopolysaccharide-D-galactosamine (LPS-GalN)-induced septic lung injury through survival rate, inflammatory, and histopathological changes in Balb/c mice. A total of 30 mice were allocated into three groups: normal control, LPS-GalN (100 ng of LPS plus 8 mg of D-galactosamine), LPS-GalN + ZnSePO (ZnPic, 52.5 µg/mL; SeMet, 0.02 µg/mL; and phycocyanin oligopeptide (PO), 2.00 mg/mL; at 1 h before the injection of LPS-GalN). Lung tissue from mice revealed noticeable inflammatory reactions and typical interstitial fibrosis after the LPS-GalN challenge. LPS-GalN-induced increased mortality rate and levels of IL-1, IL-6, IL-10, TGF-β, TNF-α, and NF-κB in lung tissue. Moreover, treatment of septic mice LPS-GalN + ZnSePO reduced mortality rates and inflammatory responses. ZnSePO considerably influenced tissue cytokine levels, contributing to its capacity to minimize acute lung injury (ALI) and pulmonary inflammation and prevent pulmonary edema formation in LPS-GalN-injected mice. In conclusion, ZnSePO treatment enhanced the survival rate of endotoxemia mice via improving inflammation and oxidative stress, indicating a possible therapeutic effect for patients with septic infections.
Collapse
Affiliation(s)
- Pinar Oner
- Department of Microbiology, Fethi Sekin City Hospital, Elazig, Turkey
| | - Besir Er
- Division of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
3
|
Long X, Wu H, Zhou Y, Wan Y, Kan X, Gong J, Zhao X. Preventive Effect of Limosilactobacillus fermentum SCHY34 on Lead Acetate-Induced Neurological Damage in SD Rats. Front Nutr 2022; 9:852012. [PMID: 35571929 PMCID: PMC9094495 DOI: 10.3389/fnut.2022.852012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/04/2022] [Indexed: 02/03/2023] Open
Abstract
Lead poisoning caused by lead pollution seriously affects people's health. Lactic acid bacteria has been shown to be useful for biological scavenging of lead. In this experiment, Sprague-Dawley (SD) rats were treated with 200 mg/L of lead acetate solution daily to induce chronic lead poisoning, and oral Limosilactobacillus fermentum (L. fermentum) SCHY34 to study its mitigation effects and mechanisms on rat neurotoxicity. The L. fermentum SCHY34 showed competent results on in vitro survival rate and the lead ion adsorption rate. Animal experiments showed that L. fermentum SCHY34 maintained the morphology of rat liver, kidney, and hippocampi, reduced the accumulation of lead in the blood, liver, kidney, and brain tissue. Further, L. fermentum SCHY34 alleviated the lead-induced decline in spatial memory and response capacity of SD rats, and also regulated the secretion of neurotransmitters and related enzyme activities in the brain tissue of rats, such as glutamate (Glu), monoamine oxidase (MAO), acetylcholinesterase (AchE), cyclic adenosine monophosphate (cAMP), and adenylate cyclase (AC). In addition, the expression of genes related to cognitive capacity, antioxidation, and anti-apoptotic in rat brain tissues were increased L. fermentum SCHY34 treatment, such as brain-derived neurotrophic factor (BDNF), c-fos, c-jun, superoxide dismutase (SOD)1/2, Nuclear factor erythroid 2-related factor 2 (Nrf2), and B-cell lymphoma 2 (Bcl-2), and so on. L. fermentum SCHY34 showed a great biological scavenging and potential effect on alleviating the toxicity of lead ions.
Collapse
Affiliation(s)
- Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Haibo Wu
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yunxiao Wan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xuemei Kan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianjun Gong
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
4
|
Brecklinghaus T. Highlight report: mechanisms of nephrotoxicity and available in vitro systems. Arch Toxicol 2019; 94:347-348. [PMID: 31822929 DOI: 10.1007/s00204-019-02640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Tim Brecklinghaus
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
5
|
Mohamed RS, Fouda K, Akl EM. Hepatorenal protective effect of flaxseed protein isolate incorporated in lemon juice against lead toxicity in rats. Toxicol Rep 2019; 7:30-35. [PMID: 31890606 PMCID: PMC6926353 DOI: 10.1016/j.toxrep.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Flaxseed protein isolate (FPI) is a good source of protein with potent antioxidant activity. Solubility and scavenging radical activity of FPI increased in the acidic medium. Lead intoxication elevated lipid peroxidation of kidney, urinary protein and creatinine as well as kidney and liver functions. lemon juice and FPI are considered protective sources of kidney and liver against lead toxicity.
Finding renal and hepatoprotective agents preferably with antioxidant activities against environmental pollutants especially lead which can adversely affect liver and kidney is a great demand. In the current study, flaxseed protein isolate (FPI) was extracted from defatted flaxseed meal. Amino acids profile, antioxidant capacity and solubility of the extracted FPI were determined. The solubility of FPI in the acidic media was exploited in preparation of lemon juice with FPI. Twenty four male rats were assigned to four groups; normal control, lead intoxicated (oral daily dose of 60 mg/kg b.w. in distilled water for four weeks), lead intoxicated and orally administrated with daily dose equal 1 ml of lemon juice as well as lead intoxicated and orally administered with FPI (daily dose equal 100 mg/kg) in 1 ml of lemon juice. The oral administration of FPI incorporated in lemon juice suppressed the elevation in kidney functions, lipid peroxidation of kidney tissues, urinary protein and creatinine as well as liver functions caused by lead intoxication. Additionally, lemon juice with FPI combated the reduction of GSH of kidney tissues. It was revealed also that lemon juice without FPI suppressed the elevation in kidney and liver functions caused by lead. It can be concluded that flaxseed protein isolate is a good source of protein with potent antioxidant activity. Additionally, lemon juice and FPI are considered protective sources of kidney and liver against lead toxicity.
Collapse
Affiliation(s)
- Rasha S. Mohamed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author at: Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt.
| | - Karem Fouda
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Engy M. Akl
- Department of Fats and Oils, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A. Potential protective effects of the edible alga Arthrospira platensis against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Appl Physiol Nutr Metab 2018; 44:271-281. [PMID: 30138569 DOI: 10.1139/apnm-2018-0428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. This study investigated the possible protective effect of dietary Arthrospira platensis supplementation against lead acetate-induced kidney injury in adult male rats. Rats were divided into 4 groups: normal rats (control rats), rats treated with spirulina, rats treated with lead (Pb) (0.344 g/kg body weight), and rats treated with Pb and spirulina. The exposure of rats to Pb for 30 days provoked renal damage with significant increases in hematological parameters, oxidative stress-related parameters (i.e., thiobarbituric acid reactive substances, protein carbonyl content, advanced oxidation protein products, and hydrogen peroxide), creatinine and urea levels in plasma, and uric acid level in urine. Conversely, antioxidant enzyme activities (i.e., catalase, glutathione peroxidase, and superoxide dismutase) and levels of nonprotein thiols, plasma uric acid, and urinary creatinine and urea decreased. The administration of spirulina to Pb-treated rats significantly improved weight, peripheral blood parameters, oxidative stress-related parameters, renal biomarker levels, and antioxidant enzyme activities. Also, rats treated with Pb and spirulina had normal kidney histology. These healing effects are likely the result of the high phenol content and significant antioxidant capacity of A. platensis. Our data strongly suggest that spirulina supplementation improves kidney function and plays an important role in the prevention of complications of Pb intoxication.
Collapse
Affiliation(s)
- Manel Gargouri
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia.,b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Ahlem Soussi
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Amel Akrouti
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Christian Magné
- b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Abdelfattah El Feki
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| |
Collapse
|
7
|
Soussi A, Gargouri M, Akrouti A, El Feki A. Antioxidant and nephro-protective effect of Juglans regia vegetable oil against lead-induced nephrotoxicity in rats and its characterization by GC-MS. EXCLI JOURNAL 2018; 17:492-504. [PMID: 30034312 PMCID: PMC6046624 DOI: 10.17179/excli2018-1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Lead (Pb) intoxication remains a major health hazard causing various deleterious effects especially on renal and hematologic system. The current study elucidated the potential protective effect of JRVO against nephrotoxicity induced by lead. Male rats were randomly divided into three groups: group one (control) received ad libitum distilled water and 1 mL of saline solution (0.9 %) given by intra-peritoneal (i.p) injection, group two (Pb) was kept on tap distilled water and animals were i.p, injected daily with lead every two days from day five until day ten, namely the sacrifice day, and group three (Pb+J) was administered by intra-peritoneal injection of Pb with the same dose and same way with Group two, while JRVO extract was administered daily by gavage during ten days. The exposure of lead reduced the number of red and white blood cells. Besides, plasma biomarkers (urea, uric acid, creatinine, LDH and ALP) levels were reduced. Lipid and protein per-oxidations increased and objectified by high TBARS and PCOs levels, while glutathione peroxidase, superoxide dismutase and catalase activities showed a significant decline after ten-day treatment. Conversely, the JRVO prevented kidney biomarker changes by improving hepatotoxicity induced by lead as evidenced by restoring the biochemical markers cited above to near normal levels. Kidney histoarchitecture confirmed the biochemical parameters and the beneficial role of JRVO. It can be concluded that the administration of JRVO alleviates Pb-induced toxicity, thus demonstrating its potent antioxidant efficacy.
Collapse
Affiliation(s)
- Ahlem Soussi
- Animal Eco-physiology Laboratory, Faculty of Sciences, University of Sfax, Tunisia
| | - Manel Gargouri
- Animal Eco-physiology Laboratory, Faculty of Sciences, University of Sfax, Tunisia
| | - Amel Akrouti
- Animal Eco-physiology Laboratory, Faculty of Sciences, University of Sfax, Tunisia
| | - Abdelfattah El Feki
- Animal Eco-physiology Laboratory, Faculty of Sciences, University of Sfax, Tunisia
| |
Collapse
|