1
|
Rustemoglu H, Arslan E, Atasever S, Cevik B, Taspinar F, Turhan AB, Rustemoglu A. Could NCOA5 a novel candidate gene for multiple sclerosis susceptibility? Mol Biol Rep 2023; 50:9335-9341. [PMID: 37817021 DOI: 10.1007/s11033-023-08830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory immune-mediated demyelinating disease that causes a challenging and disabling condition. Environmental and genetic factors play a role in appearing the state of the disease. Recent studies have shown that nuclear cofactor genes may play a role in the pathogenesis of MS. NCOA5 is a nuclear receptor coactivator independent of AF2 that modulates ERa-mediated transcription. This gene is involved in the pathogenesis of diseases such as psoriasis, Behcet's disease, and cancer. METHODS AND RESULTS We investigated the relationship between the rs2903908 polymorphism of the NCOA5 gene and MS among 157 unrelated MS patients and 160 healthy controls by RT-PCR. The frequencies of the CC, CT, and TT genotypes were 19.87%, 37.82%, and 42.31%, respectively, for the MS group and 5.63%, 43.75%, and 50.62%, respectively, for the control group. The CC genotype and the C allele were found to be significantly higher in the patient group (the p values were 0.0002 and 0.003, respectively). CONCLUSIONS The fact that the CC genotype was found to be significantly higher in the patient group compared to the control group (p = 0.0002) and that it had a statistically significantly higher OR value (OR, 95% CI = 4.16, 1.91-9.05) suggests that the C allele may recessively predispose to MS for this polymorphism. These results suggest for the first time that the NCOA5 gene may have an effect on the occurrence of MS through different molecular pathways, which are discussed in the manuscript.
Collapse
Affiliation(s)
- Husniye Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Erdem Arslan
- Faculty of Medicine, Department of Medical Pharmacology, Aksaray University, Aksaray, Turkey
| | - Sema Atasever
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Betul Cevik
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Filiz Taspinar
- Faculty of Medicine, Department of Physiology, Aksaray University, Aksaray, Turkey
| | - Ahmet Bülent Turhan
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey
| | - Aydin Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey.
| |
Collapse
|
2
|
Lin X, Liu F, Meng K, Liu H, Zhao Y, Chen Y, Hu W, Luo D. Comprehensive Transcriptome Analysis Reveals Sex-Specific Alternative Splicing Events in Zebrafish Gonads. Life (Basel) 2022; 12:life12091441. [PMID: 36143477 PMCID: PMC9501657 DOI: 10.3390/life12091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Alternative splicing is an important way of regulating gene functions in eukaryotes. Several key genes involved in sex determination and gonadal differentiation, such as nr5a1 and ddx4, have sex-biased transcripts between males and females, suggesting a potential regulatory role of alternative splicing in gonads. Currently, the sex-specific alternative splicing events and genes have not been comprehensively studied at the genome-wide level in zebrafish. In this study, through global splicing analysis on three independent sets of RNA-seq data from matched zebrafish testes and ovaries, we identified 120 differentially spliced genes shared by the three datasets, most of which haven’t been reported before. Functional enrichment analysis showed that the GO terms of mRNA processing, mRNA metabolism and microtubule-based process were strongly enriched. The testis- and ovary-biased alternative splicing genes were identified, and part of them (tp53bp1, tpx2, mapre1a, kif2c, and ncoa5) were further validated by RT-PCR. Sequence characteristics analysis suggested that the lengths, GC contents, and splice site strengths of the alternative exons or introns may have different influences in different types of alternative splicing events. Interestingly, we identified an unexpected high proportion (over 70%) of non-frameshift exon-skipping events, suggesting that in these cases the two protein isoforms derived from alternative splicing may both have functions. Furthermore, as a representative example, we found that the alternative splicing of ncoa5 causes the loss of a conserved RRM domain in the short transcript predominantly produced in testes. Our study discovers novel sex-specific alternative splicing events and genes with high reliabilities in zebrafish testes and ovaries, which would provide attractive targets for follow-up studies to reveal the biological significances of alternative splicing events and genes in sex determination and gonadal differentiation.
Collapse
Affiliation(s)
- Xing Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (D.L.)
| | - Kaifeng Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hairong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanyuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: (F.L.); (D.L.)
| |
Collapse
|
3
|
Koptan DMT, Rasheed Bahgat DM, Abdelrasool AA, Allam RSHM, Elgengehy FT, Abdel Baki NM, Medhat BM. Analysis of Nuclear Receptor Coactivator 5 (NCOA5) Messenger RNA Expression and rs2903908 Single Nucleotide Polymorphism of NCOA5 in an Egyptian Cohort with Behçet's Disease: A Single-Center Case-control Study. Ocul Immunol Inflamm 2021; 30:1436-1446. [PMID: 34255592 DOI: 10.1080/09273948.2021.1889610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The nuclear receptor coactivator 5 (NCOA5) has been linked to several inflammatory disorders, including Behçet's disease (BD). We evaluated the expression of NCOA5 messenger RNA (mRNA) using real-time reverse transcription-polymerase chain reaction, and analyzed the rs2903908 T > C of NCOA5 using TaqMan allelic discrimination assay in 49 Egyptian BD patients and 50 controls. The NCOA5 mRNA levels were higher in patients compared to controls (p = .02), female patients compared to males (p = .037), and in patients with ocular involvement (p = .049). Non-CC genotype carriers had a higher frequency of articular manifestations compared with CC carriers (p = .047). Genotypes CC + CT were associated with reduced risk of cutaneous involvement (OR = 0.27, p = .04). CC carriers with active BD or cutaneous manifestations displayed significantly lower NCOA5 mRNA expression than TT carriers. Our results demonstrate that NCOA5 is linked to BD clinical findings and activity.
Collapse
Affiliation(s)
- Dina M T Koptan
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Dina M Rasheed Bahgat
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Asmaa A Abdelrasool
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Riham S H M Allam
- Faculty of Medicine, Kasr Al Ainy, Department of Ophthalmology, Cairo University, Egypt
| | - Fatema T Elgengehy
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Noha M Abdel Baki
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Basma M Medhat
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| |
Collapse
|
4
|
Deng Y, Zhu W, Zhou X. Immune Regulatory Genes Are Major Genetic Factors to Behcet Disease: Systematic Review. Open Rheumatol J 2018; 12:70-85. [PMID: 30069262 PMCID: PMC6040213 DOI: 10.2174/1874312901812010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Behcet's disease (BD) is a chronic refractory multi-system autoimmune disorder that occurs in a genetically susceptible host. Multiple genetic factors have been identified that may contribute to the pathogenesis of BD. The major genes with polymorphisms associated with BD include HLA-B and -A, CIITA, ERAP1, MICA, IL10, IL12A, IL12RB2, IL23R, MEFV, IRF8, TNFAIP3, REL, TLR4, NOD1,2, CCR1,CCR3, GIMAP1,2,4, KLRC4, STAT4, NCOA5, FOXP3, PSORS1C1, FUT2, UBAC2, SUMO4, ADO-EGR2, CEBPB-PTPN1, and JPKL-CNTN5. These genes encode proteins involved mainly in immune regulation and inflammation, and some in transcription and post-translational modification. A complete view of these BD-associated genes may provide a clue to this complex disease in terms of its pathogenesis and exploring potentially targeted therapies for BD.
Collapse
Affiliation(s)
- Yan Deng
- The Second Affiliated Hospital of Nanchang University, Nanchangine>, China.,Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA
| | - Weifeng Zhu
- Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA.,College of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA
| |
Collapse
|
5
|
Zheng ZC, Wang QX, Zhang W, Zhang XH, Huang DP. A novel tumor suppressor gene NCOA5 is correlated with progression in papillary thyroid carcinoma. Onco Targets Ther 2018; 11:307-311. [PMID: 29391807 PMCID: PMC5769572 DOI: 10.2147/ott.s154158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background In contrast to the excellent prognosis for papillary thyroid carcinoma (PTC), the high incidence of lymph node metastasis (LNM) markedly increases the risk of recurrence and secondary surgery. Thus, novel biomarkers must be urgently identified to assess LNM for patients with PTC. NCOA5 is deeply involved in the progression of human cancer; however, its role in thyroid cancer remains unknown. Patients and methods Quantitative real-time polymerase chain reaction was conducted to investigate the expression of NCOA5 in PTC. RNA-seq data from The Cancer Genome Atlas (TCGA) database were downloaded to further understand the role of NCOA5 in PTC and its relationship with LNM. Results NCOA5 was significantly downregulated in PTC tissues when compared with that in adjacent noncancerous thyroid tissues both in our local cohort and TCGA database. Reduced expression of NCOA5 was significantly associated with aggressive clinicopathological features, including histological type, tumor stage, BRAF-V600E mutation, LNM, extrathyroid extension, and clinical stage. Moreover, logistic analysis indicated that reduced expression of NCOA5, age, histological type, and clinical stage are independent high-risk factors for LNM in PTC. Conclusion Our study provides new insights and evidence that NOCA5 was significantly correlated with the progression of PTC and was particularly involved in LNM.
Collapse
Affiliation(s)
- Zhou-Ci Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qing-Xuan Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiao-Hua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Du-Ping Huang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|