1
|
Li S, Ruan B, Wang Z, Xia J, Lin Q, Xu R, Zhu H, Yu Z. Glucose dysregulation promotes oncogenesis in human bladder cancer by regulating autophagy and YAP1/TAZ expression. J Cell Mol Med 2023; 27:3744-3759. [PMID: 37665055 PMCID: PMC10718143 DOI: 10.1111/jcmm.17943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Glucose dysregulation is strongly correlated with cancer development, and cancer is prevalent in patients with Type 2 diabetes (T2D). We aimed to elucidate the mechanism underlying autophagy in response to glucose dysregulation in human bladder cancer (BC). 220 BC patients were included in this retrospective study. The expression of YAP1, TAZ and AMPK, EMT-associated markers, and autophagy marker proteins was analysed by immunohistochemistry, western blotting, and quantitative real-time PCR (qPCR). Further, T24 and UMUC-3 BC cells were cultured in media with different glucose concentrations, and the expression of YAP1, TAZ, AMPK and EMT-associated markers, and autophagy marker proteins was analysed by western blotting and qPCR. Autophagy was observed by immunofluorescence and electron microscopy. BC cell viability was tested using MTT assays. A xenograft nude mouse model of diabetes was used to evaluate tumour growth, metastasis and survival. A poorer pathologic grade and tumour-node-metastasis stage were observed in patients with BC with comorbid T2D than in others with BC. YAP1 and TAZ were upregulated in BC samples from patients with T2D. Mechanistically, high glucose (HG) promoted BC progression both in vitro and in vivo and inhibited autophagy. Specifically, various autophagy marker proteins and AMPK were negatively regulated under HG conditions and correlated with YAP1 and TAZ expression. These results demonstrate that HG inhibits autophagy and promotes cancer development in BC. YAP1/TAZ/AMPK signalling plays a crucial role in regulating glucose dysregulation during autophagy. Targeting these effectors exhibits therapeutic significance and can serve as prognostic markers in BC patients with T2D.
Collapse
Affiliation(s)
- Shi Li
- Department of Urology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Banzhan Ruan
- Department of Oncology of The First Affiliated Hospital and Tumor InstituteHainan Medical UniversityHaikouHainanChina
| | - Zhi Wang
- Department of Urology and Chest SurgeryThe People Hospital of TongjiangBazhongSichuanChina
| | - Jianling Xia
- Department of Oncology and HematologyThe People Hospital of TongjiangBazhongSichuanChina
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalHospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Qi Lin
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruoting Xu
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hua Zhu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhixian Yu
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Supabphol S, Seubwai W, Wongkham S, Saengboonmee C. High glucose: an emerging association between diabetes mellitus and cancer progression. J Mol Med (Berl) 2021; 99:1175-1193. [PMID: 34036430 DOI: 10.1007/s00109-021-02096-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The association of cancer and diabetes mellitus (DM) has been studied for decades. Hyperglycemia and the imbalance of hormones are factors that contribute to the molecular link between DM and carcinogenesis and cancer progression. Hyperglycemia alone or in combination with hyperinsulinemia are key factors that promote cancer aggressiveness. Many preclinical studies suggest that high glucose induces abnormal energy metabolism and aggressive cancer via several mechanisms. As evidenced by clinical studies, hyperglycemia is associated with poor clinical outcomes in patients who have comorbid DM. The prognoses of cancer patients with DM are improved when their plasma glucose levels are controlled. This suggests that high glucose level maybe be involved in the molecular mechanism that causes the link between DM and cancer and may also be useful for prognosis of cancer progression. This review comprehensively summarizes the evidence from recent pre-clinical and clinical studies of the impact of hyperglycemia on cancer advancement as well as the underlying molecular mechanism for this impact. Awareness among clinicians of the association between hyperglycemia or DM and cancer progression may improve cancer treatment outcome in patients who have DM.
Collapse
Affiliation(s)
- Suangson Supabphol
- The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Charupong Saengboonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR. In vitro Anti-colorectal Cancer Potential of the Medicinal Mushroom Ganoderma neo-japonicum Imazeki in Hyperglycemic Condition: Impact on Oxidative Stress, Cell Cycle and Apoptosis. Nutr Cancer 2021; 74:978-995. [PMID: 34085886 DOI: 10.1080/01635581.2021.1931701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clinical efficacy of chemotherapy is often compromised by diabetogenic glucose on colorectal cancer (CRC). High glucose has been shown to diminish the cytotoxicity of anticancer drugs. The issue can potentially be addressed with natural products. Recently, we revealed that Ganoderma neo-japonicum exhibits inhibitory activities against human colonic carcinoma cells. In this study, the impacts of hexane fraction (Hex, sterol-enriched) and chloroform fraction (Chl, terpenoid-enriched) were further elucidated. The cellular responses, including oxidative stress, cell cycle, and apoptosis were compared between the presence of normal glucose (NG, 5.5 mM) and high glucose (HG, 25 mM). HG promoted cell viability with concomitant elevation of GSH level. Both Hex and Chl fractions stimulated NO production, in addition, induced cell cycle arrest. The apoptotic effect of Hex fraction was glucose-dependent, but Chl fraction triggered apoptosis with an equivalent extent in NG and HG conditions. Overall, the active fractions from G. neo-japonicum show therapeutic potential in managing hyperglycemia-associated CRC.
Collapse
Affiliation(s)
- Meng-Fei Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|