1
|
da Cruz Nizer WS, Adams ME, Inkovskiy V, Beaulieu C, Overhage J. The secondary metabolite hydrogen cyanide protects Pseudomonas aeruginosa against sodium hypochlorite-induced oxidative stress. Front Microbiol 2023; 14:1294518. [PMID: 38033579 PMCID: PMC10687435 DOI: 10.3389/fmicb.2023.1294518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The high pathogenicity of Pseudomonas aeruginosa is attributed to the production of many virulence factors and its resistance to several antimicrobials. Among them, sodium hypochlorite (NaOCl) is a widely used disinfectant due to its strong antimicrobial effect. However, bacteria develop many mechanisms to survive the damage caused by this agent. Therefore, this study aimed to identify novel mechanisms employed by P. aeruginosa to resist oxidative stress induced by the strong oxidizing agent NaOCl. We analyzed the growth of the P. aeruginosa mutants ΔkatA, ΔkatE, ΔahpC, ΔahpF, ΔmsrA at 1 μg/mL NaOCl, and showed that these known H2O2 resistance mechanisms are also important for the survival of P. aeruginosa under NaOCl stress. We then conducted a screening of the P. aeruginosa PA14 transposon insertion mutant library and identified 48 mutants with increased susceptibility toward NaOCl. Among them were 10 mutants with a disrupted nrdJa, bvlR, hcnA, orn, sucC, cysZ, nuoJ, PA4166, opmQ, or thiC gene, which also exhibited a significant growth defect in the presence of NaOCl. We focussed our follow-up experiments (i.e., growth analyzes and kill-kinetics) on mutants with defect in the synthesis of the secondary metabolite hydrogen cyanide (HCN). We showed that HCN produced by P. aeruginosa contributes to its resistance toward NaOCl as it acts as a scavenger molecule, quenching the toxic effects of NaOCl.
Collapse
Affiliation(s)
| | | | | | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Chen W, Guo R, Wang Z, Xu W, Hu Y. Dimethyl phthalate destroys the cell membrane structural integrity of Pseudomonas fluorescens. Front Microbiol 2022; 13:949590. [PMID: 36071970 PMCID: PMC9441906 DOI: 10.3389/fmicb.2022.949590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
A Gram-negative bacteria (Pseudomonas fluorescens) was exposed to different concentrations (0, 20, and 40 mg/L) of dimethyl phthalate (DMP) for 8 h, and then Fourier transform infrared spectroscopy (FTIR) analysis, lipopolysaccharide content detection, analysis of fatty acids, calcein release test, proteomics, non-targeted metabolomics, and enzyme activity assays were used to evaluate the toxicological effect of DMP on P. fluorescens. The results showed that DMP exposure caused an increase in the unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio and in the release of lipopolysaccharides (LPSs) from the cell outer membrane (OM) of P. fluorescens. Moreover, DMP regulated the abundances of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) of P. fluorescens and induced dye leakage from an artificial membrane. Additionally, excessive reactive oxygen species (ROS), malondialdehyde (MDA), and changes in antioxidant enzymes (i.e., catalase [CAT] and superoxide dismutase [SOD]) activities, as well as the inhibition of Ca2+-Mg2+-ATPase and Na+/K+-ATPase activities in P. fluorescens, which were induced by the DMP. In summary, DMP could disrupt the lipid asymmetry of the outer membrane, increase the fluidity of the cell membrane, and destroy the integrity of the cell membrane of P. fluorescens through lipid peroxidation, oxidative stress, and ion imbalance.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Ruxin Guo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Zhigang Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- *Correspondence: Zhigang Wang
| | - Weihui Xu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Yunlong Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
3
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
4
|
Abd El-Baky RM, Mandour SA, Ahmed EF, Hashem ZS, Sandle T, Mohamed DS. Virulence profiles of some Pseudomonas aeruginosa clinical isolates and their association with the suppression of Candida growth in polymicrobial infections. PLoS One 2020; 15:e0243418. [PMID: 33290412 PMCID: PMC7723275 DOI: 10.1371/journal.pone.0243418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/22/2020] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause a variety of diseases especially in the hospital environment. However, this pathogen also exhibits antimicrobial activity against Gram-positive bacteria and fungi. This study aimed to characterize different virulence factors, secreted metabolites and to study their role in the suppression of Candida growth. Fifteen P. aeruginosa isolates were tested for their anticandidal activity against 3 different Candida spp. by the cross-streak method. The effect on hyphae production was tested microscopically using light and scanning electron microscopy (SEM). Polymerase chain reaction was used in the detection of some virulence genes. Lipopolysaccharide profile was performed using SDS-polyacrylamide gel stained with silver. Fatty acids were analyzed by GC-MS as methyl ester derivatives. It was found that 5 P. aeruginosa isolates inhibited all tested Candida spp. (50-100% inhibition), one isolate inhibited C. glabrata only and 3 isolates showed no activity against the tested Candida spp. The P. aeruginosa isolates inhibiting all Candida spp. were positive for all virulence genes. GC-Ms analysis revealed that isolates with high anticandidal activity showed spectra for several compounds, each known for their antifungal activity in comparison to those with low or no anticandidal activity. Hence, clinical isolates of P. aeruginosa showed Candida species-specific interactions by different means, giving rise to the importance of studying microbial interaction in polymicrobial infections and their contribution to causing disease.
Collapse
Affiliation(s)
- Rehab Mahmoud Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Eman Farouk Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Zeinab Shawky Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tim Sandle
- School of Health Sciences, Division of Pharmacy & Optometry, University of Manchester, Manchester, United Kingdom
| | - Doaa Safwat Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| |
Collapse
|
5
|
Quintieri L, Fanelli F, Zühlke D, Caputo L, Logrieco AF, Albrecht D, Riedel K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front Microbiol 2020; 11:991. [PMID: 32670211 PMCID: PMC7326052 DOI: 10.3389/fmicb.2020.00991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
In food chain, Pseudomonas spp. cause spoilage by reducing shelf life of fresh products, especially during cold storage, with a high economic burden for industries. However, recent studies have shed new light on health risks occurring when they colonize immunocompromised patient tissues. Likewise to P. aeruginosa, they exhibit antibiotic resistance and biofilm formation, responsible for their spread and persistence in the environment. Biofilm formation might be induced by environmental stresses, such as temperature fluctuations causing physiological and metabolic changes exacerbating food spoilage (by protease and pigment synthesis), and the production of adhesion molecules, chemotactic or underestimated virulence factors. In order to provide a new insight into phenotypic biodiversity of Pseudomonas spoilers isolated from cold stored cheese, in this work 19 Pseudomonas spp. were investigated for biofilm, pigments, exopolysaccharide production and motility at low temperature. Only nine strains showed these phenotypic traits and the blue pigmenting cheese strain P. fluorescens ITEM 17298 was the most distinctive. In addition, this strain decreased the survival probability of infected Galleria mellonella larvae, showing, for the first time, a pathogenic potential. Genomic and proteomic analyses performed on the ITEM 17298 planktonic cells treated or not with lactoferrin derived antibiofilm peptides allowed to reveal specific biofilm related-pathways as well as proteins involved in pathogenesis. Indeed, several genes were found related to signaling system by cGMP-dependent protein kinases, cellulose, rhamnolipid and alginate synthesis, antibiotic resistance, adhesion and virulence factors. The proteome of the untreated ITEM 17298, growing at low temperature, showed that most of the proteins associated with biofilm regulation, pigmentation motility, antibiotic resistance and pathogenecity were repressed, or decreased their levels in comparison to that of the untreated cultures. Thus, the results of this work shed light on the complex pathways network allowing psychrotrophic pseudomonads to adapt themselves to food-refrigerated conditions and enhance their spoilage. In addition, the discovery of virulence factors and antibiotic resistance determinants raises some questions about the need to deeper investigate these underestimated bacteria in order to increase awareness and provide input to update legislation on their detection limits in foods.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Leonardo Caputo
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2019; 35:178. [PMID: 31701321 PMCID: PMC6838043 DOI: 10.1007/s11274-019-2739-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa is a common, Gram-negative environmental organism. It can be a significant pathogenic factor of severe infections in humans, especially in cystic fibrosis patients. Due to its natural resistance to antibiotics and the ability to form biofilms, infection with this pathogen can cause severe therapeutic problems. In recent years, metabolomic studies of P. aeruginosa have been performed. Therefore, in this review, we discussed recent achievements in the use of metabolomics methods in bacterial identification, differentiation, the interconnection between genome and metabolome, the influence of external factors on the bacterial metabolome and identification of new metabolites produced by P. aeruginosa. All of these studies may provide valuable information about metabolic pathways leading to an understanding of the adaptations of bacterial strains to a host environment, which can lead to new drug development and/or elaboration of new treatment and diagnostics strategies for Pseudomonas.
Collapse
Affiliation(s)
- Karolina Anna Mielko
- Bioorganic Chemistry Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Sławomir Jan Jabłoński
- Biotransformation Department, University of Wroclaw, Plac Uniwersytecki 1, 50-137, Wroclaw, Poland
| | | | - Dorota Sands
- Mother and Child Institute, Kasprzaka 17a, 01-211, Warszawa, Poland
| | - Marcin Łukaszewicz
- Biotransformation Department, University of Wroclaw, Plac Uniwersytecki 1, 50-137, Wroclaw, Poland
| | - Piotr Młynarz
- Bioorganic Chemistry Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.
| |
Collapse
|