1
|
Moghtadaie A, Mahboobi H, Fatemizadeh S, Kamal MA. Emerging role of nanotechnology in treatment of non-alcoholic fatty liver disease (NAFLD). EXCLI JOURNAL 2023; 22:946-974. [PMID: 38023570 PMCID: PMC10630531 DOI: 10.17179/excli2023-6420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevailing health challenge that requires urgent innovative interventions. This review explores the role of nanotechnology as a promising potential in the treatment of NAFLD. It delineates the limitations of the current management strategies for NAFLD and highlights the new nanotechnology-based treatments including nanoemulsions, liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanoparticles, and zinc oxide nanoparticles. Despite the optimism surrounding the nanotechnological approach, the review underscores the need to address the limitations such as technical challenges, potential toxicity, and ethical considerations that impede the practical application of nanotechnology in NAFLD management. It advocates for collaborative efforts from researchers, clinicians, ethicists, and policymakers to achieve safe, effective, and equitable nanotechnology-based treatments for NAFLD. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Atie Moghtadaie
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahboobi
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Fatemizadeh
- Department of Gastroenterology and Hepatology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
2
|
Qaeed MA, Hendi A, Obaid AS, Thahe AA, Osman AM, Ismail A, Mindil A, Eid AA, Aqlan F, Osman NMA, Al-Farga A, Al-Maaqar SM, Saif AA. The effect of different aqueous solutions ratios of Ocimum basilicum utilized in AgNPs synthesis on the inhibition of bacterial growth. Sci Rep 2023; 13:5866. [PMID: 37041159 PMCID: PMC10088745 DOI: 10.1038/s41598-023-31221-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
This study examined the effect of varying concentrations of Ocimum basilicum aqueous extract, which was done via the green synthesis of Silver nanoparticles (AgNPs), on the identification of the most effective concentration for bacteria inhibitory activity. Different concentrations of the aqueous Ocimum basilicum extract (0.25, 0.50, 0.75 and 1.00 mM) were used as reducing and stabilizing agent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV-Vis spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of AgNPs was studied against E. coli ATCC 35218 using well diffusion, MIC, MBC, and time-kill curve. The dark yellow color of the Ocimum basilicum aqueous solution indicates the successful synthesis process of the AgNPs. UV-spectra of the AgNPs display a gradual increase of absorption in sequence with concentration increase of aqueous Ocimum basilicum extract solution from 0.25 to 1.00 mM. This, in turn, led to a shift in the wavelength from 488 to 497 nm, along with a change in the nanoparticle size from 52 to 8 nm. The tests also showed a high activity of the particles against bacteria (E. coli), ranging between 15.6 and 62.5 µg/ml. Based on AgNPs, it was confirmed that an aqueous Ocimum basilicum extract can be used as an effective, reducing and stabilizing agent for the synthesis of different sizes of AgNPs based on the solvent concentration. The AgNPs also proved to be effective in inhibiting and killing bacteria.
Collapse
Affiliation(s)
- Motahher A Qaeed
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed Hendi
- Physics Department and IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ahmed S Obaid
- Physics Department, College of Science, University of Anbar, Ramadi, Iraq
| | - Asad A Thahe
- Department of Medical Physics College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Abdalghaffar M Osman
- Chemistry Department and IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - A Ismail
- Department of Physics, University of Hafr Al Batin, Hafar Al-Batin, 31991, Saudi Arabia
| | - A Mindil
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alharthi A Eid
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nadir M A Osman
- Chemistry Department, College of Chemicals and Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biology, Faculty of Education, Albaydha University, Albaydha, Yemen.
| | - Ala'eddin A Saif
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Mutukwa D, Taziwa RT, Khotseng L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244469. [PMID: 36558321 PMCID: PMC9785588 DOI: 10.3390/nano12244469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/31/2023]
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts has been receiving tremendous attention as an alternative to conventional physical and chemical methods. The Lamiaceae plant family is one of the largest herbal families in the world and is famous for its aromatic and polyphenolic biomolecules that can be utilised as reducing and stabilising agents during the synthesis of ZnO NPs. This review will go over the synthesis and how synthesis parameters affect the Lamiaceae-derived ZnO NPs. The Lamiaceae-mediated ZnO NPs have been utilised in a variety of applications, including photocatalysis, antimicrobial, anticancer, antioxidant, solar cells, and so on. Owing to their optical properties, ZnO NPs have emerged as potential catalysts for the photodegradation of organic dyes from wastewater. Furthermore, the low toxicity, biocompatibility, and antibacterial activity of ZnO against various bacteria have led to the application of ZnO NPs as antibacterial agents. Thus, this review will focus on the application of Lamiaceae-mediated ZnO NPs for the photodegradation of organic dyes and antibacterial applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond T. Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
4
|
Berehu HM, S A, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J, Mohapatra B, Mishra A, Patnaik S. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Front Bioeng Biotechnol 2022; 9:788527. [PMID: 34976976 PMCID: PMC8714927 DOI: 10.3389/fbioe.2021.788527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy side effects, medication resistance, and tumor metastasis impede the advancement of cancer treatments, resulting in a poor prognosis for cancer patients. In the last decade, nanoparticles (NPs) have emerged as a promising drug delivery system. Swertia chirayita has long been used as a treatment option to treat a variety of ailments. Zinc oxide nanoparticles (ZnO-NPs) were synthesized from ethanolic and methanolic extract of S. chirayita leaves. ZnO-NPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron Microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Its anti-cancer activities were analyzed using cytotoxicity assays [MTT assay and acridine orange (AO) staining] and quantitative real-time PCR (qRT-PCR) using colorectal cancer (CRC) cells (HCT-116 and Caco-2) and control cells (HEK-293). The ZnO-NPs synthesized from the ethanolic extract of S. chirayita have an average size of 24.67 nm, whereas those from methanolic extract have an average size of 22.95 nm with a spherical shape. MTT assay showed NPs’ cytotoxic potential on cancer cells (HCT-116 and Caco-2) when compared to control cells (HEK-293). The IC50 values of ethanolic and methanolic extract ZnO-NPs for HCT-116, Caco-2, and HEK-293 were 34.356 ± 2.71 and 32.856 ± 2.99 μg/ml, 52.15 ± 8.23 and 63.1 ± 12.09 μg/ml, and 582.84 ± 5.26 and 615.35 ± 4.74 μg/ml, respectively. Acridine orange staining confirmed the ability of ZnO-NPs to induce apoptosis. qRT-PCR analysis revealed significantly enhanced expression of E-cadherin whereas a reduced expression of vimentin and CDK-1. Altogether, these results suggested anti-cancer properties of synthesized ZnO-NPs in CRC.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Anupriya S
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Md Imran Khan
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Rajasree Chakraborty
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Kousalya Lavudi
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalam, Tirupati, India
| | - Bibhashee Mohapatra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Amrita Mishra
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
5
|
Rasha E, Alkhulaifi MM, AlOthman M, Khalid I, Doaa E, Alaa K, Awad MA, Abdalla M. Effects of Zinc Oxide Nanoparticles Synthesized Using Aspergillus niger on Carbapenem-Resistant Klebsiella pneumonia In Vitro and In Vivo. Front Cell Infect Microbiol 2021; 11:748739. [PMID: 34869059 PMCID: PMC8635236 DOI: 10.3389/fcimb.2021.748739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, the mortality rate in Saudi Arabia's ICUs is increasing due to the spread of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This study was carried out to evaluate the ability of biologically synthesized zinc oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome carbapenem-resistant K. pneumoniae (KPC) in vitro and in vivo. ZnO-NPs were synthesized via a biological method and characterized using UV-Vis spectroscopy, Zetasizer and zeta potential analyses, x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by a macro-dilution method. The morphological alteration of KPC cells after ZnO-NPs treatment was observed by SEM. The in vivo susceptibility of KPC cells to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape, and size of the synthesized nanoparticles. The MIC and MBC were 0.7 and 1.8 mg/ml, respectively. The in vivo results displayed reduced inflammation and wound re-epithelialization of KPC-infected rats. These findings demonstrated that ZnO-NPs have great potential to be developed as antibacterial agents.
Collapse
Affiliation(s)
- Elsayim Rasha
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Monerah AlOthman
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Khalid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elnagar Doaa
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khatab Alaa
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal A Awad
- King Abdullah Institute of Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10070884. [PMID: 34356805 DOI: 10.3389/fphy.2021.641481] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 05/22/2023]
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Anastasia A Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
7
|
Ahlam AA, Shaniba VS, Jayasree PR, Manish Kumar PR. Spondias pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles Induce Dual Modes of Apoptotic-Necrotic Death in HCT 116 and K562 Cells. Biol Trace Elem Res 2021; 199:1778-1801. [PMID: 32761516 DOI: 10.1007/s12011-020-02303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
This study evaluates the effects of phyto-derived zinc oxide nanoparticles (ZnONPs) on human cancer cells, colon carcinoma HCT 116, and chronic myelogenous leukemic K562, along with normal lymphocytes/erythrocytes. The commercial, chemically synthesized ZnONPs (cZnONPs) were also assessed in parallel. Using an eco-friendly approach devoid of harmful chemicals, biogenic nanoparticles were synthesized from aqueous leaf extract of Spondias pinnata (SpLZnONPs) by a sol-gel method. Optical, structural, and elemental characterization of both particle types were carried out deploying UV-Vis/photoluminescence spectroscopy, FTIR, XRD, FESEM, HRTEM, and EDX. Both SpLZnONPs and cZnONPs displayed hexagonal wurtzite structure with particle sizes averaging 30 and 48.5 nm, respectively. SpLZnONPs were found to be cytotoxic to both cancer cell types while cZnONPs exhibited toxicity only against HCT 116 cells. Interestingly, the cytomorphological changes and analysis of DNA laddering pattern observed in these treated cells were indicative of simultaneous induction of dual modes of death involving apoptosis and necrosis. Flow cytometric analysis of cell-cycle distribution, clonogenic, wound healing, and comet assays provided evidences of the antiproliferative potential of the tested nanoparticles. Apoptosis induction via oxidative stress-mediated Ca2+ release, ROS generation, loss of mitochondrial membrane potential, and externalization of phosphatidylserine was also determined biochemically. Relative expression of apoptotic genes was quantified using RT-qPCR and Western blot analysis. Mitotic index analysis, MTT, and hemolytic assays on lymphocytes and erythrocytes clearly revealed the absence of any deleterious effect(s) of SpLZnONPs in these cells compared with the toxicity of the chemically derived cZnONPs, thereby attesting to the biocompatibility and selective action of the biogenic nanoparticles.
Collapse
Affiliation(s)
- Abdul Aziz Ahlam
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - V S Shaniba
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Kerala, 673635, India
| | - P R Manish Kumar
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India.
| |
Collapse
|
8
|
Rasha E, Monerah A, Manal A, Rehab A, Mohammed D, Doaa E. Biosynthesis of Zinc Oxide Nanoparticles from Acacia nilotica (L.) Extract to Overcome Carbapenem-Resistant Klebsiella Pneumoniae. Molecules 2021; 26:molecules26071919. [PMID: 33805514 PMCID: PMC8037469 DOI: 10.3390/molecules26071919] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.
Collapse
Affiliation(s)
- Elsayim Rasha
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (E.R.); (A.M.)
| | - AlOthman Monerah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alkhulaifi Manal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (E.R.); (A.M.)
| | - Ali Rehab
- Department of Drug and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Doud Mohammed
- Department of Microbiology, Prince Mohammed bin Abdulaziz Hospital-National Guard Health Affairs, Medina 41311, Saudi Arabia;
| | - Elnagar Doaa
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| |
Collapse
|
9
|
Abbasi BH, Nazir M, Muhammad W, Hashmi SS, Abbasi R, Rahman L, Hano C. A Comparative Evaluation of the Antiproliferative Activity against HepG2 Liver Carcinoma Cells of Plant-Derived Silver Nanoparticles from Basil Extracts with Contrasting Anthocyanin Contents. Biomolecules 2019; 9:E320. [PMID: 31366167 PMCID: PMC6722760 DOI: 10.3390/biom9080320] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology is a well-established and revolutionized field with diverse therapeutic properties. Several methods have been employed using different reducing agents to synthesize silver nanoparticles (AgNPs). Chemical mediated synthetic methods are toxic and resulted in non-desired effects on biological systems. Herein, we, synthesized silver nanoparticles using callus extract of purple basil (BC-AgNPs) and anthocyanin extract deriving from the same plant (i.e. purple basil) (AE-AgNPs), and systematically investigated their antiproliferative potential against HepG2 Liver Carcinoma Cells. The phyto-fabricated AgNPs were characterized by different techniques like UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM) and Energy dispersive X-rays (EDX). Morphologically, both types of NPs were found spherical. The average size of BC-AgNPs and AE-AgNPs as revealed through XRD and SEM analyses were calculated as 50.97 ± 0.10 nm and 42.73 ± 1.24 nm, respectively. FT-IR spectral analysis demonstrates the existence of possible phytochemicals required for the capping and reduction of Ag ions. Herein, following solid phase extraction (SPE) coupled to HPLC analysis, we report for the first-time the anthocyanin mediated synthesis of AgNPs and conforming the successful capping of anthocyanin. Small sized AE-AgNPs showed significant cytotoxic effect against human hepatocellular carcinoma (HepG2) cell line as compared to BC-AgNPs. Therefore, the results revealed that the prevalent group of flavonoids present in purple basil is the anthocyanins and AE-AgNPs could be employed as potential anticancer agents in future treatments strategies.
Collapse
Affiliation(s)
- Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, INRA USC1328, Université d'Orléans, F 28000 Chartres, France.
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France.
| | - Munazza Nazir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Botany, University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir 13230, Pakistan
| | - Wali Muhammad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syed Salman Hashmi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical & Genetic Engineering (IBGE), Sector G-9/1, Islamabad 45320, Pakistan
| | - Lubna Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, INRA USC1328, Université d'Orléans, F 28000 Chartres, France.
| |
Collapse
|
10
|
Abbasi BH, Siddiquah A, Tungmunnithum D, Bose S, Younas M, Garros L, Drouet S, Giglioli-Guivarc'h N, Hano C. Isodon rugosus (Wall. ex Benth.) Codd In Vitro Cultures: Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities. Int J Mol Sci 2019; 20:ijms20020452. [PMID: 30669669 PMCID: PMC6358864 DOI: 10.3390/ijms20020452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
Isodon rugosus (Wall. ex Benth.) Codd accumulates large amounts of phenolics and pentacyclic triterpenes. The present study deals with the in vitro callus induction from stem and leaf explants of I. rugosus under various plant growth regulators (PGRs) for the production of antioxidant and anti-ageing compounds. Among all the tested PGRs, thidiazuron (TDZ) used alone or in conjunction with α-napthalene acetic acid (NAA) induced highest callogenesis in stem-derived explants, as compared to leaf-derived explants. Stem-derived callus culture displayed maximum total phenolic content and antioxidant activity under optimum hormonal combination (3.0 mg/L TDZ + 1.0 mg/L NAA). HPLC analysis revealed the presence of plectranthoic acid (373.92 µg/g DW), oleanolic acid (287.58 µg/g DW), betulinic acid (90.51 µg/g DW), caffeic acid (91.71 µg/g DW), and rosmarinic acid (1732.61 µg/g DW). Complete antioxidant and anti-aging potential of extracts with very contrasting phytochemical profiles were investigated. Correlation analyses revealed rosmarinic acid as the main contributor for antioxidant activity and anti-aging hyaluronidase, advance glycation end-products inhibitions and SIRT1 activation, whereas, pentacyclic triterpenoids were correlated with elastase, collagenase, and tyrosinase inhibitions. Altogether, these results clearly evidenced the great valorization potential of I. rugosus calli for the production of antioxidant and anti-aging bioactive extracts for cosmetic applications.
Collapse
Affiliation(s)
- Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Bioactifs et Cosmétiques, GDR 3711 COSM'ACTIFS, CNRS, 45067 Orléans CÉDEX 2, France.
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France.
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Bioactifs et Cosmétiques, GDR 3711 COSM'ACTIFS, CNRS, 45067 Orléans CÉDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Shankhamala Bose
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France.
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Bioactifs et Cosmétiques, GDR 3711 COSM'ACTIFS, CNRS, 45067 Orléans CÉDEX 2, France.
- Institut de Chimie Organique et Analytique, ICOA UMR7311, Université d'Orléans-CNRS, 45067 Orléans CÉDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Bioactifs et Cosmétiques, GDR 3711 COSM'ACTIFS, CNRS, 45067 Orléans CÉDEX 2, France.
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Bioactifs et Cosmétiques, GDR 3711 COSM'ACTIFS, CNRS, 45067 Orléans CÉDEX 2, France.
| |
Collapse
|