1
|
Zhang C, Zheng M, Bai R, Chen J, Yang H, Luo G. Molecular mechanisms of lipid droplets-mitochondria coupling in obesity and metabolic syndrome: insights and pharmacological implications. Front Physiol 2024; 15:1491815. [PMID: 39588271 PMCID: PMC11586377 DOI: 10.3389/fphys.2024.1491815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Abnormal lipid accumulation is a fundamental contributor to obesity and metabolic disorders. Lipid droplets (LDs) and mitochondria (MT) serve as organelle chaperones in lipid metabolism and energy balance. LDs play a crucial role in lipid storage and mobilization, working in conjunction with MT to regulate lipid metabolism within the liver, brown adipose tissue, and skeletal muscle, thereby maintaining metabolic homeostasis. The novelty of our review is the comprehensive description of LD and MT interaction mechanisms. We also focus on the current drugs that target this metabolism, which provide novel approaches for obesity and related metabolism disorder treatment.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runlin Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiale Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Ni C, Yue L, Ran M, Wang L, Huang F, Yang S, Lai J, Jiang N, Huang X, Qin D, Li H, Zhou J, Zeng J, Wu A, Wu J. Identification of octyl gallate, a novel apoptosis-inducing compound for colon cancer therapy, from Sanguisorba officinalis L. by cell membrane chromatography and UHPLC-(Q)TOF-MS/MS. Heliyon 2024; 10:e32230. [PMID: 38933948 PMCID: PMC11200347 DOI: 10.1016/j.heliyon.2024.e32230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.
Collapse
Affiliation(s)
- Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacy, Deyang People's Hospital, Deyang, 618000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
3
|
Auranofin Attenuates Non-Alcoholic Fatty Liver Disease by Suppressing Lipid Accumulation and NLRP3 Inflammasome-Mediated Hepatic Inflammation In Vivo and In Vitro. Antioxidants (Basel) 2020; 9:antiox9111040. [PMID: 33114221 PMCID: PMC7690872 DOI: 10.3390/antiox9111040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) causes liver dysfunction and is associated with obesity and type 2 diabetes. Chronic inflammation is associated not only with the development of NAFLD, but also with hepatic diseases, including steatohepatitis, cirrhosis, and hepatocellular carcinoma. Auranofin is a treatment for rheumatoid arthritis and has recently been reported to have potential effects against a variety of diseases, including inflammation, cancer, and viral infection. In this study, auranofin may be considered as a new treatment for the management of metabolic syndrome, as well as in the treatment of NAFLD through immunomodulation. To determine the effect of auranofin on NAFLD, C57BL/6 mice were randomly grouped, fed a regular diet or a high fat diet (HFD), and injected with normal saline or auranofin for 8 weeks. Auranofin significantly decreased the body weight, epididymal fat weight, serum aspartate aminotransferase (AST), and glucose, as well as the serum triglyceride, cholesterol, and low-density lipoprotein cholesterol levels as compared to the HFD group. We also observed that hepatic steatosis was increased in the HFD group and was suppressed by auranofin treatment. In addition, auranofin suppressed the expressions of interleukin (IL)-1β, IL-18, caspase-1, and the NOD-like receptor family pyrin domain containing 3 (NLRP3) in the liver tissue. Furthermore, the expression of NADPH oxidase 4 and peroxisome proliferator-activated receptor γ (PPARγ), which are a major source of oxidative stress and a regulator of adipogenesis, respectively, were also decreased by auranofin. In addition, primary mouse hepatocytes were incubated with lipopolysaccharide (LPS) and palmitic acid (PA) to induce lipid accumulation and hepatic inflammation for an in vitro model. Auranofin could significantly inhibit LPS- and PA-induced inflammatory activity including nitric oxide and NLRP3 inflammasome-mediated cytokines. The results of this study demonstrate that auranofin treatment inhibits the characteristics of NAFLD through the inhibition of NLRP3 inflammasome. Therefore, auranofin may have potential as a candidate for improving NAFLD symptoms.
Collapse
|