1
|
Liu SV, Nagasaka M, Atz J, Solca F, Müllauer L. Oncogenic gene fusions in cancer: from biology to therapy. Signal Transduct Target Ther 2025; 10:111. [PMID: 40223139 PMCID: PMC11994825 DOI: 10.1038/s41392-025-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Oncogenic gene fusions occur across a broad range of cancers and are a defining feature of some cancer types. Cancers driven by gene fusion products tend to respond well to targeted therapies, where available; thus, detection of potentially targetable oncogenic fusions is necessary to select optimal treatment. Detection methods include non-sequencing methods, such as fluorescence in situ hybridization and immunohistochemistry, and sequencing methods, such as DNA- and RNA-based next-generation sequencing (NGS). While NGS is an efficient way to analyze multiple genes of interest at once, economic and technical factors may preclude its use in routine care globally, despite several guideline recommendations. The aim of this review is to present a summary of oncogenic gene fusions, with a focus on fusions that affect tyrosine kinase signaling, and to highlight the importance of testing for oncogenic fusions. We present an overview of the identification of oncogenic gene fusions and therapies approved for the treatment of cancers harboring gene fusions, and summarize data regarding treating fusion-positive cancers with no current targeted therapies and clinical studies of fusion-positive cancers. Although treatment options may be limited for patients with rare alterations, healthcare professionals should identify patients most likely to benefit from oncogenic gene fusion testing and initiate the appropriate targeted therapy to achieve optimal treatment outcomes.
Collapse
Affiliation(s)
- Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA.
| | - Misako Nagasaka
- Division of Hematology Oncology, Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Judith Atz
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Kao WH, Chiu KY, Tsai SCS, Teng CLJ, Oner M, Lai CH, Hsieh JT, Lin CC, Wang HY, Chen MC, Lin H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167568. [PMID: 39536992 DOI: 10.1016/j.bbadis.2024.167568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aberrant PI3K/Akt activation is linked to prostate cancer (PCa) malignancy, while androgen receptor (AR) is critical in early-stage PCa development. Investigating the interaction between these pathways is crucial for PCa malignancy. Our previous study demonstrated that p35-CDK5 mediates post-translational modifications of AR, STAT3, and p21CIP1, eventually promoting PCa cell growth. This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the β-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, TX75390, USA.
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Huang X, Zhang D, Zhang D, Guo J, Gu G, Wang Y, Wu G, Wang C, Fu B, Li K. Decoding PTEN: from biological functions to signaling pathways in tumors. Mol Biol Rep 2024; 51:1089. [PMID: 39446204 DOI: 10.1007/s11033-024-10049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The tumor suppressor gene Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), possessing both protein and lipid phosphatase activities, is frequently mutated in various human cancers. PTEN aberrations disrupt critical cellular processes like proliferation, apoptosis, migration, and invasion, thereby promoting tumor growth. In the cells, PTEN localizes to the nucleus, cytoplasm, or cell membrane, and its roles depends on the subcellular localization. PTEN is regulated at the transcriptional, post-transcriptional, and post-translational levels, implying that its functions on the tumors are complex. The relationship between PTEN abnormalities and tumors has garnered significant interest in recent years. PTEN regulates essential cellular processes involved in tumorigenesis. Mutations or deletions in the PTEN gene often correlate with unfavorable prognosis and increased cancer recurrence. Numerous studies suggest that PTEN expression levels in tumors could be a valuable biomarker for cancer diagnosis, treatment, and predicting patient outcomes. This paper provides a comprehensive review of the biological function, regulatory mechanisms, and post-translational modifications of PTEN. Furthermore, this review explores the expression and regulation of PTEN in different tumor types, as well as its interactions with environmental factors in tumorigenesis. This comprehensive analysis aims to deepen our understanding of the signaling pathways between PTEN and cancer.
Collapse
Affiliation(s)
- Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Di Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Guohao Gu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong Province, PR China.
| |
Collapse
|
4
|
Hauber B, Hong A, Hunsche E, Maculaitis MC, Collins SP. Patient Preferences for Attributes of Androgen Deprivation Therapies in Prostate Cancer: A Discrete Choice Experiment with Latent Class Analysis. Adv Ther 2024; 41:3934-3950. [PMID: 39167332 PMCID: PMC11399292 DOI: 10.1007/s12325-024-02955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Medical androgen deprivation therapy (ADT) options have expanded for patients with advanced prostate cancer (PC). Historically, ADT was primarily available in long-acting injectable formulations. In 2020, the first oral formulation was US Food and Drug Administration-approved for adults with advanced PC. This study's aim was to assess patient preferences for attributes of medical ADT, including mode of administration, side effects, impact on sexual interest, and out-of-pocket (OOP) costs, and to segment respondents into distinct groups based on their treatment choice patterns. METHODS A cross-sectional survey was conducted among US residents aged > 40 years with PC, employing a discrete choice experiment to assess preferences for ADT attributes. For each choice task, respondents were asked to select the hypothetical treatment profile that they preferred out of two presented. Latent class analysis (LCA) was conducted to estimate attribute-level preference weights and calculate attribute relative importance for groups of respondents with similar treatment preferences. RESULTS A total of 304 respondents completed the survey (mean age 64.4 years). LCA identified four preference groups, named according to the attribute each group considered most important: Sexual interest, Cost-sensitive, Favors daily pill, and Favors injection. Most respondents in the Sexual interest group were < 65 years, while the Cost-sensitive group was mostly ≥ 65 years. Favors daily pill had the highest proportion of ADT-naïve individuals. On average, respondents in these groups preferred an oral medication. Favors injection, which had the highest proportion of ADT-experienced individuals, preferred infrequent intramuscular injections, lower chance of post-ADT testosterone recovery, and lower OOP cost. CONCLUSION Respondents differed in their preferences regarding ADT attributes, highlighting the need for patient involvement in their treatment decisions. Effective communication between healthcare providers and patients about the benefits and risks of available therapies should be encouraged to ensure that patients receive the PC treatment that best meets their needs.
Collapse
Affiliation(s)
| | | | - Elke Hunsche
- Sumitomo Pharma Switzerland GmbH, Basel, Switzerland
| | | | - Sean P Collins
- Medstar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA.
| |
Collapse
|
5
|
Kundrapu DB, Chaitanya AK, Manaswi K, Kumari S, Malla R. Quercetin and taxifolin inhibits TMPRSS2 activity and its interaction with EGFR in paclitaxel-resistant breast cancer cells: An in silico and in vitro study. Chem Biol Drug Des 2024; 104:e14600. [PMID: 39075030 DOI: 10.1111/cbdd.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protease/serine (TMPRSS2), a type II transmembrane serine protease, plays a crucial role in different stages of cancer. Recent studies have reported that the triggering epidermal growth factor receptor (EGFR) activation through protease action promotes metastasis. However, there are no reports on the interaction of TMPRSS2 with EGFR, especially in triple-negative triple negative (TNBC). The current study investigates the unexplored interaction between TMPRSS2 and EGFR, which are key partners mediating metastasis. This interaction is explored for potential targeting using quercetin (QUE) and taxifolin (TAX). TMPRSS2 expression patterns in breast cancer (BC) tissues and subtypes have been predicted, with the prognostic significance assessed using the GENT2.0 database. Validation of TMPRSS2 expression was performed in normal and TNBC tissues, including drug-resistant cell lines, utilizing GEO datasets. TMPRSS2 was further validated as a predictive biomarker for FDA-approved chemotherapeutics through transcriptomic data from BC patients. The study demonstrated the association of TMPRSS2 with EGFR through in silico analysis and validates the findings in TNBC cohorts using the TIMER2.0 web server and the TCGA dataset through C-Bioportal. Molecular docking and molecular dynamic simulation studies identified QUE and TAX as best leads targeting TMPRSS2. They inhibited cell-free TMPRSS2 activity like clinical inhibitor of TMPRSS2, Camostat mesylate. In cell-based assays focused on paclitaxel-resistant TNBC (TNBC/PR), QUE and TAX demonstrated potent inhibitory activity against extracellular and membrane-bound TMPRSS2, with low IC50 values. Furthermore, ELISA and cell-based AlphaLISA assays demonstrated that QUE and TAX inhibit the interaction of TMPRSS2 with EGFR. Additionally, QUE and TAX exhibited significant inhibition of proliferation and cell cycle accompanied by notable alterations in the morphology of TNBC/PR cells. This study provides valuable insights into potential of QUE and TAX targeting TMPRSS2 overexpressing TNBC.
Collapse
Affiliation(s)
- Durga Bhavani Kundrapu
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Amajala Krishna Chaitanya
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Kothapalli Manaswi
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
6
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Sun C, Bai S, Chen S, Chen J, Liu P, Wu Y, Zhao X, Wu Z. Insufficient Effective Time of Suberanilohydroxamic Acid, a Deacetylase Inhibitor, Treatment Promotes PC3 Cell Growth. Biol Pharm Bull 2024; 47:1708-1716. [PMID: 39462585 DOI: 10.1248/bpb.b24-00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Castration-resistant prostate cancer (CRPC) contributes mostly to prostate cancer-specific mortality, and conventional castration therapy is almost ineffective, new therapies are needed. As a new potential anti-cancer drug, histone deacetylases (HDACs) inhibitors were demonstrated to be effective in inhibiting drug-resistance cancers in preclinical studies, but the results from clinical trials on CRPC patients were disappointing, and the reasons are unknown. In this study, we investigated the effect of suberanilohydroxamic acid (SAHA), a broad-spectrum pan-HDAC inhibitor, on proliferation, apoptosis, cell cycle progression in PC3 cells, and found that, unlike significant inhibiting effects at high-dose, low-dose SAHA significantly promoted PC3 cell growth. Further colony formation assay showed that the inhibitory effect of SAHA is also dependent on the treatment time, high-dose SAHA also exhibited promoting effect on PC3 cells when the treatment time was insufficient. However, this effect was not observed in another CRPC cell line, DU145, or another HDAC inhibitor, Trichostatin A (TSA). Our results indicate that, instead of inhibitory effect, SAHA would promote PC3 cell growth if the dose is low or the treatment time is insufficient, but this effect has not been observed in other CRPC cell line or HDAC inhibitors.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Shiting Bai
- Department of Pain Medicine, Zhejiang Hospital
| | - Sisi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Jianglin Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Pengyuan Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Yajun Wu
- Department of TCM Pharmacy, Zhejiang Hospital
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University
| | - Zhibing Wu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| |
Collapse
|