1
|
Gao F, Li M, Zhu L, Li J, Xu J, Jia S, Ou Q, Jin C, Tian H, Wang J, Xu J, Xu W, Xu GT, Lu L. Knockdown of HSPA13 Inhibits TGFβ1-Induced Epithelial-Mesenchymal Transition of RPE by Suppressing the PI3K/Akt Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39226050 PMCID: PMC11373707 DOI: 10.1167/iovs.65.11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE This study aimed to explore the impact of HSPA13 on epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells and proliferative vitreoretinopathy (PVR) development, along with its associated molecular mechanisms. METHODS HSPA13 expression was evaluated in epiretinal membranes (ERMs) from patients with PVR using immunohistochemistry. The effects of HSPA13 knockdown on TGFβ1-induced EMT in hESC-RPE cells were studied through quantitative PCR (qPCR), Western blot, and wound healing assays. Intracellular Ca2+ levels were measured using Fluo-8/AM incubation. A rat PVR model was induced by the intravitreal injection of RPE cells combined with platelet-rich plasma (PRP). RNA-seq was applied to study the molecular mechanism of HSPA13 knockdown-mediated EMT inhibition. RESULTS HSPA13 was found in human ERMs and its expression increased with TGFβ1 treatment in hESC-RPE cells. Knockdown of HSPA13 inhibited TGFβ1-induced EMT and migration. In the PVR rat model, HSPA13 was expressed in the ERMs and its knockdown in RPE cells reduced the development of PVR. Consistent with these observations, RNA-seq showed a global suppression of TGFβ1-induced EMT and migration by shHSPA13 in RPE cells. Mechanistically, TGFβ1 treatment increased intracellular Ca2+ levels, leading to an upregulation of HSPA13 expression. Downregulation of HSPA13 hindered the phosphorylation of PI3K/Akt in TGFβ1-induced RPE cells. CONCLUSIONS Our study revealed the involvement of HSPA13 in PVR development, as well as in TGFβ1-induced EMT of RPE through the PI3K/Akt signaling pathway. Targeting HSPA13-related pathways involved in regulating EMT in RPE cells could serve as a novel therapeutic approach for patients with PVR.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Li
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lilin Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Jie Xu
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Song Jia
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wei Xu
- Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
3
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Rousou C, Schuurmans CCL, Urtti A, Mastrobattista E, Storm G, Moonen C, Kaarniranta K, Deckers R. Ultrasound and Microbubbles for the Treatment of Ocular Diseases: From Preclinical Research towards Clinical Application. Pharmaceutics 2021; 13:pharmaceutics13111782. [PMID: 34834196 PMCID: PMC8624665 DOI: 10.3390/pharmaceutics13111782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022] Open
Abstract
The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood–retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases. Finally, the safety and tolerability aspects of USMB, essential for the translation of USMB to the clinic, are discussed.
Collapse
Affiliation(s)
- Charis Rousou
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
- Correspondence:
| | - Carl C. L. Schuurmans
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Institute of Chemistry, St. Petersburg State University, Universitetskii Pr. 26, Petrodvorets, 198504 St. Petersburg, Russia
| | - Enrico Mastrobattista
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
| | - Gert Storm
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chrit Moonen
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Roel Deckers
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| |
Collapse
|
5
|
Daftarian N, Baigy O, Suri F, Kanavi MR, Balagholi S, Afsar Aski S, Moghaddasi A, Nourinia R, Abtahi SH, Ahmadieh H. Intravitreal connective tissue growth factor neutralizing antibody or bevacizumab alone or in combination for prevention of proliferative vitreoretinopathy in an experimental model. Exp Eye Res 2021; 208:108622. [PMID: 34022176 DOI: 10.1016/j.exer.2021.108622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Connective tissue growth factor (CTGF) is released by retinal pigment epithelial (RPE) cells and detectable in proliferative membranes (PrMs). This experimental study was performed to investigate the mRNA and protein levels of both CTGF and vascular endothelial growth factor A (VEGF-A) in a rabbit model of proliferative vitreoretinopathy (PVR). In addition, the effects of a single intravitreal injection of the safe dose of anti-CTGF or bevacizumab as monotherapy and in combination were evaluated. PVR was induced in the right eye of albino rabbits by intravitreal injection of cultured adult human RPE cells. Quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot analysis of CTGF and VEGF-A were performed on whole eye tissue in the PVR model versus controls at different time points. In the next step, the PVR models were assigned to five groups. The monotherapy groups received a single intravitreal injection of 0.1 ml of anti-CTGF 100 μg/ml (final concentration of 6.6 μg/ml in the vitreous) or 0.03 ml of 25 mg/ml bevacizumab. In the combined group, the abovementioned amounts of anti-CTGF and bevacizumab were injected intravitreally from separate sites in one session. No antibody injection was performed in the control group. Intravitreal injection of 0.1 ml of control IgG (1 mg/ml of isotype matched) antibody was performed in the placebo group. After 2 weeks, histologic evaluation including, trichrome staining for collagen, immunostaining by anti-alpha-smooth muscle actin for myofibroblasts, and anti-collagen type-1 antibody on paraffin embedded anterior-posterior sections was done. In addition, fundus photography was performed for clinically equivalent PVR staging. Twenty-four hours following PVR induction, CTGF mRNA and protein levels increased five- and- three-fold compared to controls, respectively (P < 0.001). VEGF-A mRNA and protein levels decreased significantly after 72 h of PVR induction compared to controls (P < 0.05). Means of PrM thickness and myofibroblast cell counts significantly decreased in the anti-CTGF group (P < 0.001 and P < 0.05, respectively). The mean area of collagen type-1 fibers of PrM in the mono- and combination therapy groups that received intravitreal anti-CTGF was significantly reduced (P < 0.001); in addition, mild PVR (stage-1 and 2) formation occurred in comparison with moderate to severe PVR (stage-4 and higher) in other groups. In conclusion, we found that intravitreal injection of CTGF neutralizing antibody resulted in a reduction in PrM thickness, collagen fibers and myofibroblast density in the PVR model. CTGF inhibition may represent a potential therapeutic target for PVR.
Collapse
Affiliation(s)
- Narsis Daftarian
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omolbanin Baigy
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Balagholi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasha Afsar Aski
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afrooz Moghaddasi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ma X, Long C, Wang F, Lou B, Yuan M, Duan F, Yang Y, Li J, Qian X, Zeng J, Lin S, Shen H, Lin X. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via wnt/β-catenin pathway. J Cell Mol Med 2021; 25:4220-4234. [PMID: 33759344 PMCID: PMC8093987 DOI: 10.1111/jcmm.16476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a refractory vitreoretinal fibrosis disease, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the key pathological mechanism of PVR. However, few studies focused on the role of METTL3, the dominating methyltransferase for m6A RNA modification in PVR pathogenesis. Immunofluorescence staining and qRT-PCR were used to determine the expression of METTL3 in human tissues. Lentiviral transfection was used to stably overexpress and knockdown METTL3 in ARPE-19 cells. MTT assay was employed to study the effects of METTL3 on cell proliferation. The impact of METTL3 on the EMT of ARPE-19 cells was assessed by migratory assay, morphological observation and expression of EMT markers. Intravitreal injection of cells overexpressing METTL3 was used to assess the impact of METTL3 on the establishment of the PVR model. We found that METTL3 expression was less in human PVR membranes than in the normal RPE layers. In ARPE-19 cells, total m6A abundance and the METTL3 expression were down-regulated after EMT. Additionally, METTL3 overexpression inhibited cell proliferation through inducing cell cycle arrest at G0/G1 phase. Furthermore, METTL3 overexpression weakened the capacity of TGFβ1 to trigger EMT by regulating wnt/β -catenin pathway. Oppositely, knockdown of METTL3 facilitated proliferation and EMT of ARPE-19 cells. In vivo, intravitreal injection of METTL3-overexpressing cells delayed the development of PVR compared with injection of control cells. In summary, this study suggested that METTL3 is involved in the PVR process, and METTL3 overexpression inhibits the EMT of ARPE-19 cells in vitro and suppresses the PVR process in vivo.
Collapse
Affiliation(s)
- Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fangyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Lyu Y, Xu W, Zhang J, Li M, Xiang Q, Li Y, Tan T, Ou Q, Zhang J, Tian H, Xu JY, Jin C, Gao F, Wang J, Li W, Rong A, Lu L, Xu GT. Protein Kinase A Inhibitor H89 Attenuates Experimental Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32031573 PMCID: PMC7325625 DOI: 10.1167/iovs.61.2.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to explore the role of the protein kinase A (PKA) pathway in proliferative vitreoretinopathy (PVR) and the effect of the PKA inhibitor H89 on experimental PVR. METHODS Epiretinal membranes (ERMs) were acquired from PVR patients and analyzed by frozen-section immunofluorescence. An in vivo model was developed by intravitreal injecting rat eyes with ARPE-19 cells and platelet-rich plasma, and changes in eye structures and vision function were observed. An in vitro epithelial-mesenchymal transition (EMT) cell model was established by stimulating ARPE-19 cells with transforming growth factor (TGF)-β. Alterations in EMT-related genes and cell function were detected. Mechanistically, PKA activation and activity were explored to assess the relationship between TGF-β1 stimulation and the PKA pathway. The effect of H89 on the TGF-β-Smad2/3 pathway was detected. RNA sequencing was used to analyze gene expression profile changes after H89 treatment. RESULTS PKA was activated in human PVR membranes. In vivo, H89 treatment protected against structural changes in the retina and prevented decreases in electroretinogram b-wave amplitudes. In vitro, H89 treatment inhibited EMT-related gene alterations and partially reversed the functions of the cells. TGF-β-induced PKA activation was blocked by H89 pretreatment. H89 did not affect the phosphorylation or nuclear translocation of regulatory Smad2/3 but increased the expression of inhibitory Smad6. CONCLUSIONS PKA pathway activation is involved in PVR pathogenesis, and the PKA inhibitor H89 can effectively inhibit PVR, both in vivo and in vitro. Furthermore, the protective effect of H89 is related to an increase in inhibitory Smad6.
Collapse
Affiliation(s)
- Yali Lyu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Mengwen Li
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Qingyi Xiang
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Tianhao Tan
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Cui L, Lyu Y, Jin X, Wang Y, Li X, Wang J, Zhang J, Deng Z, Yang N, Zheng Z, Guo Y, Wang C, Mao R, Xu J, Gao F, Jin C, Zhang J, Tian H, Xu GT, Lu L. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:751. [PMID: 32042767 DOI: 10.21037/atm.2019.11.90] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of proliferative vitreoretinopathy (PVR). Some microRNAs (miRNAs) participate in regulating RPE cell EMT as post-transcriptional regulators. However, the function of miR-194 in RPE cell EMT remains elusive. Here, the role of miR-194 in PVR was investigated. Methods Retinal layers were obtained using laser capture microdissection (LCM). Gene expression at the mRNA and protein level in the tissues and cells was examined using quantitative reverse transcription (RT)-polymerase chain reaction and Western blotting, respectively. The related protein expression was observed by immunostaining. The effect of miR-194 on RPE cell EMT was examined by gel contraction, wound healing, and cell migration assays. RNAseq was performed in ARPE-19 with transfection of pSuper-scramble and pSuper-miR-194. The target gene of miR-194 was identified and confirmed via bioinformatics analysis and dual-luciferase reporter assay. ARPE-19 (adult retinal pigment epithelium-19) cells were treated with transforming growth factor (TGF)-β1 in the same fashion as the in vitro RPE cell EMT model. A PVR rat model was prepared by intravitreous injection of ARPE-19 cells with plasma-rich platelets. Results miR-194 was preferentially expressed in the RPE cell layer compared with the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer in rat retina. RNAseq analysis indicated that miR-194 overexpression was involved in RPE cell processes, including phagocytosis, ECM-receptor interaction, cell adhesion molecules, and focal adhesion. miR-194 overexpression significantly inhibited the TGF-β1-induced EMT phenotype of RPE cells in vitro. Zinc finger E-box binding homeobox 1 (ZEB1), a key transcription factor in EMT, was confirmed as the direct functional target of miR-194. Knockdown of ZEB1 attenuated TGF-β1-induced α-smooth muscle actin expression in ARPE-19 cells, and overexpression of miR-194 could significantly reduce the expression of some genes which were up-regulated by ZEB1. Exogenous miR-194 administration in vivo effectively suppressed PVR in the rat model, both functionally and structurally. Conclusions Our findings demonstrate for the first time that miR-194 suppresses RPE cell EMT by functionally targeting ZEB1. The clinical application of miR-194 in patients with PVR merits further investigation.
Collapse
Affiliation(s)
- Lian Cui
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Yali Lyu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University Medical school, Shanghai 200011, China
| | - Yueye Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiang Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhongzhu Deng
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Nan Yang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zixuan Zheng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Yizheng Guo
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Chao Wang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Rui Mao
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 310000, China.,The collaborative Innovation Center for Brain Science, Tongji University, Shanghai 310000, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
9
|
Palomares-Ordóñez JL, Sánchez-Ramos JA, Ramírez-Estudillo JA, Robles-Contreras A. Correlation of transforming growth factor β-1 vitreous levels with clinical severity of proliferative vitreoretinopathy in patients with rhegmatogenous retinal detachment. ACTA ACUST UNITED AC 2018; 94:12-17. [PMID: 30309666 DOI: 10.1016/j.oftal.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To correlate the vitreous concentration of transforming growth factor β-1 (TGF β-1) with the degree of clinical severity of proliferative vitreoretinopathy (PVR). DESIGN A prospective, observational, cross-sectional study carried out on cases and controls. PARTICIPANTS The study included 40 patients with a diagnosis of PVR secondary to rhegmatogenous retinal detachment. METHODS Vitreous was obtained in patients undergoing pars plana vitrectomy by rhegmatogenous retinal detachment, who were treated during the period from August 2015 to June 2016, in a national reference centre for ophthalmological care in Mexico City, Mexico. The levels of TGFβ-1 were quantified by ELISA technique. An ANOVA test was performed for the comparison of the different groups, together with a post-hoc Dunns test. A statistically significant difference was considered when obtaining P <.05. RESULTS The levels of TGFβ-1 were quantified, and the following means were found for each group: In the group with PVR grade A, 1150.6 ± 452.08 pg / ml, PVR grade B: 1129.6 ± 365.54 pg / ml, and PVR grade C: 1146.4 ± 330.21 pg / ml. The statistical analysis did not find significant differences when comparing the different PVR groups. (P=.53). However, when performing the differential analysis for each level of severity, a statistically significant increase in the expression of TGFβ-1 was observed in the group of patients with PVR-A at a greater number of days of evolution of the detachment. (P=.03). There were no statistically significant differences for PVR-B and PVR-C (P=.16 and P=.16, respectively). CONCLUSION Although the levels of TGFβ-1 are not directly related to the clinical severity grade, suggesting that there must be other factors involved in the advanced stages of PVR, TGFβ-1 may have greater relevance during the initial stages of the clinical course by promoting the epithelial-mesenchymal transition due to its greater expression in PVR-A. Thus, it can be concluded that each isoform plays a very particular role in the complex process of PVR.
Collapse
Affiliation(s)
- J L Palomares-Ordóñez
- Departamento de Retina y Vítreo, Fundación «Hospital Nuestra Señora de la Luz» IAP, Ciudad de México, México.
| | - J A Sánchez-Ramos
- Departamento de Retina y Vítreo, Fundación «Hospital Nuestra Señora de la Luz» IAP, Ciudad de México, México
| | - J A Ramírez-Estudillo
- Departamento de Retina y Vítreo, Fundación «Hospital Nuestra Señora de la Luz» IAP, Ciudad de México, México
| | - A Robles-Contreras
- Centro de Investigación Biomédica, Fundación «Hospital Nuestra Señora de la Luz» IAP, Ciudad de México, México
| |
Collapse
|
10
|
Hirose F, Kiryu J, Tabata Y, Tamura H, Musashi K, Takase N, Usui H, Kuwayama S, Kato A, Yoshimura N, Ogura Y, Yasukawa T. Experimental proliferative vitreoretinopathy in rabbits by delivery of bioactive proteins with gelatin microspheres. Eur J Pharm Biopharm 2018; 129:267-272. [PMID: 29906511 DOI: 10.1016/j.ejpb.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a challenging pathological condition, often causing failure of retinal detachment surgery. The purpose of this study was to evaluate the feasibility of a delivery system of bioactive proteins using anionic and cationic gelatin microspheres and to establish a new PVR model in rabbits by intraocular sustained delivery of basic fibroblast growth factor (bFGF) and interferon-beta (IFNβ). Anionic and cationic gelatin microspheres were prepared and immersed in bFGF and IFNβ solution, respectively, to yield a polyion complex between gelatin matrix and a bioactive protein. The bFGF-impregnated microspheres were injected into the subretinal space in rabbit eyes. At week 2, the IFNβ-impregnated microspheres also were injected into the same space. Control eyes received gelatin microspheres without bFGF or IFNß, or both. The eyes then were observed for 8 weeks by ophthalmoscopy, fundus photography, and fluorescein angiography. The eyes also were evaluated histologically. In the group with both bFGF and IFNβ, the number of eyes with more severe PVR increased over time. Histologic examination showed retinal folds. In contrast, no proliferative changes were seen in any control groups. Subretinal implantation of bFGF and IFNβ-impregnated gelatin microspheres induced reproducible PVR in rabbit eyes. This study guaranteed delivery of bioactive proteins with gelatin microspheres.
Collapse
Affiliation(s)
- Fumitaka Hirose
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Junichi Kiryu
- Department of Ophthalmology, Kawasaki Medical School Hospital, Kurashiki 701-0192, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Tamura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kunihiro Musashi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Noriaki Takase
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hideaki Usui
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Soichiro Kuwayama
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Aki Kato
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuichiro Ogura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tsutomu Yasukawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
11
|
Khanum BNMK, Guha R, Sur VP, Nandi S, Basak SK, Konar A, Hazra S. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye (Lond) 2017; 31:1317-1328. [PMID: 28304388 DOI: 10.1038/eye.2017.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeThe purpose of the study was to evaluate the efficacy and safety of intravitreal pirfenidone for inhibition of proliferative vitreoretinopathy (PVR) in a model of penetrating ocular injury.Patients and methodsPenetrating trauma was induced on the retina of rabbit and treated either with 0.1 ml of phosphate-buffered saline (PBS) or 0.1 ml of 0.5% pirfenidone, and development of PVR was evaluated clinically and graded after 1 month. Histopathology and immunohistochemistry with transforming growth factor beta (TGFβ), alpha smooth muscle actin (αSMA), and collagen-1 were performed to assess the fibrotic changes. Expression of cytokines in the vitro-retinal tissues at different time points following pirfenidone and PBS injection was examined by RT-PCR. Availability of pirfenidone in the vitreous of rabbit at various time points was determined by high-performance liquid chromatography following injection of 0.1 ml of 0.5% pirfenidone. In normal rabbit eye, 0.1 ml of 0.5% pirfenidone was injected to evaluate any toxic effect.ResultsClinical assessment and grading revealed prevention of PVR formation in pirfenidone-treated animals, gross histology, and histopathology confirmed the observation. Immunohistochemistry showed prevention in the expression of collagen-I, αSMA, and TGFβ in the pirfenidone-treated eyes compared to the PBS-treated eyes. Pirfenidone inhibited increased gene expression of cytokines observed in control eyes. Pirfenidone could be detected up to 48 h in the vitreous of rabbit eye following single intravitreal injection. Pirfenidone did not show any adverse effect following intravitreal injection; eyes were devoid of any abnormal clinical sign, intraocular pressure, and electroretinography did not show any significant change and histology of retina remained unchanged.ConclusionThis animal study shows that pirfenidone might be a potential therapy for PVR. Further clinical study will be useful to evaluate the clinical application of pirfenidone.
Collapse
Affiliation(s)
- B N M K Khanum
- Department of Veterinary Surgery &Radiology, West Bengal University of Animal &Fishery Sciences, Kolkata, India
| | - R Guha
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - V P Sur
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S Nandi
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - A Konar
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S Hazra
- Department of Veterinary Surgery &Radiology, West Bengal University of Animal &Fishery Sciences, Kolkata, India
| |
Collapse
|
12
|
He H, Kuriyan AE, Su CW, Mahabole M, Zhang Y, Zhu YT, Flynn HW, Parel JM, Tseng SCG. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3. Sci Rep 2017; 7:43736. [PMID: 28252047 PMCID: PMC5333089 DOI: 10.1038/srep43736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 01/15/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is mediated by proliferation and epithelial mesenchymal transition (EMT) of retinal pigment epithelium (RPE). Because heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) purified from human amniotic membrane exerts anti-inflammatory and anti-scarring actions, we hypothesized that HC-HA/PTX3 could inhibit these PVR-related processes in vitro. In this study, we first optimized an ARPE-19 cell culture model to mimic PVR by defining cell density, growth factors, and cultivation time. Using this low cell density culture model and HA as a control, we tested effects of HC-HA/PTX3 on the cell viability (cytotoxicity), proliferation (EGF + FGF-2) and EMT (TGF-β1). Furthermore, we determined effects of HC-HA/PTX3 on cell migration (EGF + FGF-2 + TGF-β1) and collagen gel contraction (TGF-β1). We found both HA and HC-HA/PTX3 were not toxic to unstimulated RPE cells. Only HC-HA/PTX3 dose-dependently inhibited proliferation and EMT of stimulated RPE cells by down-regulating Wnt (β-catenin, LEF1) and TGF-β (Smad2/3, collagen type I, α-SMA) signaling, respectively. Additionally, HA and HC-HA/PTX3 inhibited migration but only HC-HA/PTX3 inhibited collagen gel contraction. These results suggest HC-HA/PTX3 is a non-toxic, potent inhibitor of proliferation and EMT of RPE in vitro, and HC-HA/PTX3’s ability to inhibit PVR formation warrants evaluation in an animal model.
Collapse
Affiliation(s)
- Hua He
- TissueTech, Inc., Miami, FL, 33173, USA
| | - Ajay E Kuriyan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | | - Yuan Zhang
- Ocular Surface Center and Ocular Surface Research &Education Foundation, Miami, FL, 33173, USA
| | | | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jean-Marie Parel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Scheffer C G Tseng
- TissueTech, Inc., Miami, FL, 33173, USA.,Ocular Surface Center and Ocular Surface Research &Education Foundation, Miami, FL, 33173, USA
| |
Collapse
|
13
|
Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy. Mediators Inflamm 2016; 2016:7920631. [PMID: 27378826 PMCID: PMC4917715 DOI: 10.1155/2016/7920631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) is vital in proliferative vitreoretinopathy (PVR) development. Apoptosis-stimulating proteins of p53 (ASPP2) have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified. Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly. Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment. Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cells in vitro and exacerbated the progression of experimental PVR in vivo, possibly via inflammatory and fibrosis cytokines.
Collapse
|
14
|
He S, Barron E, Ishikawa K, Nazari Khanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD, Hinton DR. Inhibition of DNA Methylation and Methyl-CpG-Binding Protein 2 Suppresses RPE Transdifferentiation: Relevance to Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2015; 56:5579-89. [PMID: 26305530 DOI: 10.1167/iovs.14-16258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate expression of methyl-CpG-binding protein 2 (MeCP2) in epiretinal membranes from patients with proliferative vitreoretinopathy (PVR) and to investigate effects of inhibition of MeCP2 and DNA methylation on transforming growth factor (TGF)-β-induced retinal pigment epithelial (RPE) cell transdifferentiation. METHODS Expression of MeCP2 and its colocalization with cytokeratin and α-smooth muscle actin (α-SMA) in surgically excised PVR membranes was studied using immunohistochemistry. The effects of 5-AZA-2'-deoxycytidine (5-AZA-dC) on human RPE cell migration and viability were evaluated using a modified Boyden chamber assay and the colorimetric 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. Expression of RASAL1 mRNA and its promoter region methylation were evaluated by real-time PCR and methylation-specific PCR. Effects of 5-AZA-dC on expression of α-SMA, fibronectin (FN), and TGF-β receptor 2 (TGF-β R2) and Smad2/3 phosphorylation were analyzed by Western blotting. Effect of short interfering RNA (siRNA) knock-down of MeCP2 on expression of α-SMA and FN induced by TGFβ was determined. RESULTS MeCP2 was abundantly expressed in cells within PVR membranes where it was double labeled with cells positive for cytokeratin and α-SMA. 5-AZA-dC inhibited expression of MeCP2 and suppressed RASAL1 gene methylation while increasing expression of the RASAL1 gene. Treatment with 5-AZA-dC significantly suppressed the expression of α-SMA, FN, TGF-β R2 and phosphorylation of Smad2/3 and inhibited RPE cell migration. TGF-β induced expression of α-SMA, and FN was suppressed by knock-down of MeCP2. CONCLUSIONS MeCP2 and DNA methylation regulate RPE transdifferentiation and may be involved in the pathogenesis of PVR.
Collapse
Affiliation(s)
- Shikun He
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| | - Ernesto Barron
- Doheny Eye Institute, Los Angeles, California, United States
| | | | - Hossein Nazari Khanamiri
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Chris Spee
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Peng Zhou
- Doheny Eye Institute, Los Angeles, California, United States
| | - Satoru Kase
- Doheny Eye Institute, Los Angeles, California, United States
| | - Zhuoshi Wang
- Doheny Eye Institute, Los Angeles, California, United States
| | - Laurie Diane Dustin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - David R Hinton
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| |
Collapse
|
15
|
Chen X, Xiao W, Wang W, Luo L, Ye S, Liu Y. The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells. PLoS One 2014; 9:e96365. [PMID: 24788939 PMCID: PMC4008562 DOI: 10.1371/journal.pone.0096365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is a major pathologic change in the development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. ERK1/2 pathway has been reported to play a key role in the carcinogenesis, cancer metastasis, and multiple fibrotic diseases. We hypothesized that ERK1/2 signaling could cross-interact with transforming growth factor β2 (TGFβ2)/Smad and Notch signaling pathways in the regulation of EMT in RPE cells. Here, we demonstrated that ERK1/2 signaling was activated in TGFβ2-induced EMT in human RPE cells, while blockade of the canonical TGFβ2/Smad2/3 signaling with SB431542 could not inhibit TGFβ2-induced the activation of ERK1/2. Meanwhile, blockade of ERK1/2 signaling with a specific MEK/ERK1/2 inhibitor U0126 strongly prevented TGFβ2-induced the downregulation of P-cadherin, and the upregulation of α-SMA, collagen type IV, N-cadherin and fibronectin in RPE cells. In addition, we also identified that blockade of ERK1/2 signaling could inhibit not only the canonical TGFβ/Smad signaling, but also the Jagged/Notch pathway. Finally, we found that blockade of Notch pathway with a specific inhibitor DAPT could inhibit TGFβ2-induced the activation of ERK1/2 pathway conversely. Therefore, our study provides evidence that ERK1/2 signaling can cross-interact with the canonical TGFβ/Smad and the Jagged/Notch signaling pathways in RPE cells EMT. ERK1/2 inhibitor may have therapeutic value in the prevention and treatment of PVR and other fibrotic diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wencong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaobi Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail: .
| |
Collapse
|
16
|
Chen X, Ye S, Xiao W, Luo L, Liu Y. Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells. Int J Mol Med 2014; 33:1195-200. [PMID: 24604358 DOI: 10.3892/ijmm.2014.1688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/26/2014] [Indexed: 11/05/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays a key role in proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), both of which lead to severe loss of vision. Recently, microRNAs (miRNAs) have been found to be involved in the regulation of various physiological and pathological processes, such as embryogenesis, organ development, oncogenesis and angiogenesis. However, the expression profile and function of miRNAs in the EMT of RPE cells remain to be clarified. In this study, human miRNA expression profiles were identified using microarrays and 304 miRNAs were found to be differentially expressed in TGFβ2-induced EMT in human RPE cells. Of these differentially expressed miRNAs, 185 miRNAs were downregulated and 119 miRNAs were upregulated at least 2-fold in TGFβ2 treatment samples. Similar alterations of miRNA expression were validated for 35 representative miRNAs by quantitative polymerase chain reaction analysis. Therefore, these results suggested that differentially expressed miRNAs play potential roles in TGFβ2-induced EMT in RPE cells. This is an essential step in the identification of miRNAs associated with PVR and PDR progression, and in the identification of potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Shaobi Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| |
Collapse
|
17
|
Xiao W, Chen X, Liu X, Luo L, Ye S, Liu Y. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J Cell Mol Med 2014; 18:646-55. [PMID: 24456602 PMCID: PMC4000116 DOI: 10.1111/jcmm.12212] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
The proliferation and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells are the major pathological changes in development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. Histone deacetylases (HDACs)-mediated epigenetic mechanisms play important roles in controlling various physiological and pathological events. However, whether HDACs are involved in the regulation of proliferation and EMT in PRE cells remains unidentified. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that some of class I and class II HDACs were up-regulated in transforming growth factor-β2 (TGF-β2)/TGF-β1-stimulated RPE cells. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of RPE cells by G1 phase cell cycle arrest through inhibition of cyclin/CDK/p-Rb and induction of p21 and p27. In the meantime, TSA strongly prevented TGF-β2-induced morphological changes and the up-regulation of α-SMA, collagen type I, collagen type IV, fibronectin, Snail and Slug. We also demonstrated that TSA affected not only the canonical Smad signalling pathway but also the non-canonical TGF-β/Akt, MAPK and ERK1/2 pathways. Finally, we found that the underlying mechanism of TSA affects EMT in RPE cells also through down-regulating the Jagged/Notch signalling pathway. Therefore, this study may provide a new insight into the pathogenesis of PVR, and suggests that epigenetic treatment with HDAC inhibitors may have therapeutic value in the prevention and treatment of PVR.
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Zhu W, Wu Y, Cui C, Zhao HM, Ba J, Chen H, Yu J. Expression of IGFBP‑6 in proliferative vitreoretinopathy rat models and its effects on retinal pigment epithelial‑J cells. Mol Med Rep 2013; 9:33-8. [PMID: 24220750 DOI: 10.3892/mmr.2013.1794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/28/2013] [Indexed: 11/05/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is one of the most common causes for failed retinal detachment surgeries. The aim of the present study was to investigate the role of insulin‑like growth factor‑binding protein‑6 (IGFBP‑6) in PVR using rat models and its effects on retinal pigment epithelial‑J (RPE‑J) cells. PVR Wistar rat models were administered intravitreal injection of RPE‑J cells (1x106/5 µl) combined with platelet‑rich plasma (1x107/5 µl). The concentration of IGFBP‑6 in the vitreous and serum of rats was tested by an enzyme‑linked immunosorbent assay and the expression of IGFBP‑6 mRNA in the liver and retina of rats was determined by quantitative polymerase chain reaction (qPCR). The expression of IGFBP‑6 mRNA in the RPE‑J cells stimulated by vitreous or serum from PVR patients or normal volunteers was also determined by qPCR. The proliferation of RPE‑J cells was evaluated by the 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium, inner salt (MTS) method. The success rate of PVR rat model induction at the 8th week was 89.5% (34/38). The concentration of IGFBP‑6 in the vitreous and serum of PVR rats was significantly higher than that of the control group (P<0.05). The expression of IGFBP‑6 mRNA in the retina of PVR rats was also significantly higher compared with the control group (P<0.05). The vitreous from PVR patients and donors significantly stimulated the expression of IGFBP‑6 mRNA in the RPE‑J cells (P<0.05). IGFBP‑6 only inhibited IGF‑II‑stimulated proliferation but not the basal level of proliferation or the PDGF/VEGF‑stimulated RPE‑J cell proliferation. Thus, the trends and effects of IGFBP‑6 provide the possibility of PVR therapeutic targets, with the vitreous representing a significant environmental factor in the progression of PVR.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Zheng X, Du L, Wang H, Gu Q. A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med 2012; 14:339-47. [PMID: 22499528 DOI: 10.1002/jgm.2629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To date, with the exception of surgery, there are no satisfactory treatments available for proliferative vitreoretinopathy (PVR). Ultrasound-targeted microbubble destruction (UTMD) represents a new approach for the gene therapy of eye diseases. The present study aimed to investigate the feasibility of the attenuation of PVR by a combinatorial use of UTMD and recombinant adeno-associated virus (rAAV)-mediated RNA interference (RNAi) targeting transforming growth factor (TGF)-β2 and platelet-derived growth factor (PDGF)-B. METHODS One hundred and eighty rats of the PVR model were averagely divided into six groups (G). The left eyes, respectively, received an intravitreal injection as follows: normal saline (G1), rAAV2-control small interfering RNA (siRNA) (G2), rAAV2-TGF-β2-siRNA (G3), rAAV2-PDGF-B-siRNA (G4), rAAV2-TGF-β2-siRNA and rAAV2-PDGF-B-siRNA (G5, G6) on day 3 after PVR induction. In G6, a condition of UTMD was used additionally. On days 14 and 28, pathological changes of eye fundus were assessed by ophthalmoscopic and histopathologic examination, and the protein and mRNA levels of TGF-β2 and PDGF-B expression were tested using enzyme-linked immunosorbent assay and a reverse transcriptase-polymerase chain reaction, respectively. RESULTS The average grade scales of proliferation and the protein and mRNA expression levels of TGF-β2 and PDGF-B in G6 were all lower than that in G5 on day 28 (p<0.05, unpaired t-test). They were all lower in G5 and G6 than in G1, G2, G3 and G4 on day 28 (p<0.05, one-way analysis of variance), although the protein and mRNA expression levels of PDGF-B in G6 did not differ from that in G1, G2, G3, G4 and G5 on day 14. CONCLUSIONS The combinatorial use of UTMD and rAAV2-mediated RNAi targeting TGF-β2 and PDGF-B can serve as a novel approach to attenuate PVR.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm 2012; 2012:815937. [PMID: 23049173 PMCID: PMC3463807 DOI: 10.1155/2012/815937] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a vision-threatening disease and a common complication of surgery to correct rhegmatogenous retinal detachment (RRD). Several models of the pathogenesis of this disease have been described with some of these models focusing on the role of inflammatory cells and other models focusing on the role of growth factors and cytokines in the vitreous which come into contact with intraretinal and retinal pigment epithelial cells. New experiments have shed light on the pathogenesis of PVR and offer promising avenues for clinical intervention before PVR develops. One such target is the indirect pathway of activation of platelet-derived growth factor receptor alpha (PDGRα), which plays an important role in PVR. Clinical trials assessing the efficacy of 5-fluorouracil (5-FU) and low-molecular-weight heparin (LMWH), daunorubicin, and 13-cis-retinoic acid, among other therapies, have yielded mixed results. Here we review inflammatory and other mechanisms involved in the pathogenesis of PVR, we highlight important clinical trials, and we discuss how findings at the bench have the potential to be translated to the bedside.
Collapse
|
22
|
Orita T, Kimura K, Nishida T, Sonoda KH. Cytokine and chemokine secretion induced by poly(I:C) through NF-κB and phosphoinositide 3-kinase signaling pathways in human corneal fibroblasts. Curr Eye Res 2012; 38:53-9. [PMID: 22954322 DOI: 10.3109/02713683.2012.721044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM Viral infection of the cornea can result in inflammation and scarring and eventually lead to blindness. Polyinosinic-polycytidylic acid [poly(I:C)], an analog of viral double-stranded RNA, induces the secretion of cytokines and chemokines from cultured corneal fibroblasts. We have now investigated the role of nuclear factor (NF)-κB and phosphoinositide 3-kinase (PI3K) signaling pathways in poly(I:C)-induced cytokine and chemokine secretion from corneal fibroblasts. MATERIALS AND METHODS Human corneal fibroblasts were cultured with poly(I:C) in the absence or presence of IKK-2 inhibitor or LY294002, which are inhibitors of NF-κB and PI3K signaling, respectively. The release of the pro-inflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, IP-10, and RANTES from the cells was measured with an enzyme-linked immunosorbent assay. RESULTS Poly(I:C) induced the secretion of IL-6, IL-8, IP-10, and RANTES from corneal fibroblasts. Whereas the poly(I:C)-induced secretion of IL-6, IP-10, and RANTES was inhibited by both IKK-2 inhibitor and LY294002, that of IL-8 was blocked only by IKK-2 inhibitor. CONCLUSIONS The poly(I:C)-induced secretion of IL-6, IP-10, and RANTES from human corneal fibroblasts is mediated by both NF-κB and PI3K signaling pathways, whereas that of IL-8 is mediated by the NF-κB pathway. These signaling pathways thus likely contribute to local inflammation in the corneal stroma induced by viral infection.
Collapse
Affiliation(s)
- Tomoko Orita
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
23
|
Zheng X, Ji P, Hu J. Sonoporation using microbubbles promotes lipofectamine-mediated siRNA transduction to rat retina. Bosn J Basic Med Sci 2012; 11:147-52. [PMID: 21875415 DOI: 10.17305/bjbms.2011.2565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-targeted microbubble destruction(UTMD) has been utilized to deliver naked siRNA into cells in in vitro settings. But whether UTMD can safely deliver naked siRNA into in vivo cells have remained unknown. This work was performed to investigate the feasibility of UTMD-enhanced naked siRNA transduction (or combined with Lipofectamine 2000) in vivo retinal cells and compare the performance between UTMD and ultrasonic irradiation alone in this enhancing effect. A dose of Cy3-labeled siRNA was injected into the vitreous cavity of rat eyes under the different conditions of Lipofectamine 2000 or/and UTMD. Transduction efficiency was assessed by fluorescence microscopy and flow cytometry. Cell and tissue damage was assessed by trypan blue exclusion test and hematoxylineosin staining, respectively. The quantity and the density of transducted cells in the group received Lipofectamine 2000 and UTMD was far more than that in other groups. The number of transducted cells in the group received Lipofectamine 2000 and ultrasonic irradiation alone was slightly more than that in the group received Lipofectamine 2000. Cy3-siRNA-positive cells can also seen in the group received UTMD alone, although the transduction efficiency is extremely low. Cell viability in each group was more than 90%, and retinal architecture in each group was well preserved. These results indicated that UTMD, with a significantly higher performance than ultrasonic irradiation alone, can effectively enhance the Lipofectamine 2000-mediated naked siRNA transduction in vivo reinal cells without any cell or tissue damage. This method can serve as a novel approach to treat the diseases of eye ground.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University (The First People's Hospital of Yancheng), Jiangsu Province, China
| | | | | |
Collapse
|