1
|
Hassanein EHM, Althagafy HS, Baraka MA, Amin H. Hepatoprotective effects of diosmin: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:279-295. [PMID: 39167171 PMCID: PMC11787178 DOI: 10.1007/s00210-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Liver diseases represent a formidable global health threat. Hesperidin, a flavonoid found in citrus fruits, is the source of diosmin (DS). The in vivo and in vitro investigations of the pharmacological effects of DS reveal that it exhibits tremendous beneficial effects, such as fighting against inflammation, oxidative stress, and fibrosis. These effects have been noticed in various disease models, emphasizing the potential therapeutic value of DS in tackling diverse pathological conditions. Interestingly, DS has promising liver-defense capabilities against a range of hepatic illnesses, such as radiation-induced hepatic injury, liver ischemia/reperfusion injury, alcoholic hepatic disease, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Furthermore, DS demonstrates potential hepatoprotective effects against environmental toxins, such as heavy metals. DS activates PPAR-γ and Nrf2, leading to antioxidant effects that reduce oxidative stress. Moreover, DS suppresses NF-κB, NLRP3, MAPK activities, and cytokine production (TNF-α and IL-1β), resulting in inflammation suppression. These anti-inflammatory effects are attributed to the activation of PPAR-γ and Nrf2, which are NF-κB inhibitors. This review aims to comprehensively discuss the hepatoprotective capacity of DS, elucidating the underlying mechanisms and identifying several research avenues that warrant further exploration to ascertain the prospective clinical advantages of DS intake as a viable strategy for the treatment of hepatic illnesses.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Rahman L, Talha Khalil A, Ahsan Shahid S, Shinwari ZK, Almarhoon ZM, Alalmaie A, Sharifi‐Rad J, Calina D. Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy. Food Sci Nutr 2024; 12:6070-6092. [PMID: 39554345 PMCID: PMC11561841 DOI: 10.1002/fsn3.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 11/19/2024] Open
Abstract
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti-inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Ali Talha Khalil
- Department of PathologyLady Reading Hospital Medical Teaching InstitutionPeshawarPakistan
| | | | | | - Zainab M. Almarhoon
- Department of ChemistryCollege of Science, King Saud UniversityRiyadhSaudi Arabia
| | - Amnah Alalmaie
- Department of PharmaceuticsCollege of Pharmacy, King Khalid UniversityAbhaSaudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
3
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
4
|
Koosha F, Sheikhzadeh P. Investigating Radioprotective Effect of Hesperidin/Diosmin Compound Against 99mTc-MIBI-Induced Cardiotoxicity: Animal Study. Cardiovasc Toxicol 2022; 22:646-654. [PMID: 35522359 DOI: 10.1007/s12012-022-09744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
This study was designed to indicate the cardiotoxicity due to 99mTc-MIBI injection in myocardial perfusion imaging in wistar Rats. In addition, protective effect of hesperidin/diosmin compound (HDC) against the cardiotoxicity was evaluated. Twenty five male rats were randomly divided into five groups. The rats in Group 1 (control) only received PBS. For Group 2 (HDC only) the rats treated with only HDC. The rats in Group 3 (radiation) received PBS before injection and exposure to 1 mCi 99mTc-MIBI. The rats in Group 4 (HDC + radiation) treated with HDC before exposure. For Group 5 (radiation + HDC) the rats were exposed and thereafter administered HDC. The Animals of this study were orally administered 100 mg/kg/day of the HDC for 7 days. Then, the rats were sacrificed and afterwards their heart tissues were carefully extracted for biochemical and histopathological evaluations. According to our results in the radiation group, the rate of rupture of cardiomyocyte fibers was higher than other groups, and in some fibers, the presence of lymphocytes was observed. Relative improvement was observed in radiation + HDC group compared to the radiation group and also a small number of cardiomyocyte fibers were torn and in some fibers, the presence of lymphocytes was observed, which was less than the model group. Collagen deposition significantly increased in radiation group compared to control group (P < 0.05). It can be seen that the percentage of collagen deposition decreased substantially in the group treated with HDC before or after radiation compared to radiation group (P < 0.05). The MDA activities significantly reduced (P < 0.05) in both (HDC + radiation) and (radiation + HDC) groups. SOD activity significantly increased in both (radiation + HDC) and (HDC + radiation) groups compared to that of radiation group (P < 0.05). It could be concluded that the HDC is safe and promising useful therapeutic agent in radiation induced cardiotoxicity for patients undergoing nuclear medicine procedures.
Collapse
Affiliation(s)
- Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Hassan MI, Ali FE, Shalkami AGS. Role of TLR-4/IL-6/TNF-α, COX-II and eNOS/iNOS pathways in the impact of carvedilol against hepatic ischemia reperfusion injury. Hum Exp Toxicol 2021; 40:1362-1373. [PMID: 33655798 DOI: 10.1177/0960327121999442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. METHODS Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. RESULTS Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. CONCLUSIONS CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.
Collapse
Affiliation(s)
- Mohamed Ia Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| |
Collapse
|
6
|
Tekeli MY, Eraslan G, Çakır Bayram L, Soyer Sarıca Z. Effect of diosmin on lipid peoxidation and organ damage against subacute deltamethrin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15890-15908. [PMID: 33242198 DOI: 10.1007/s11356-020-11277-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the protective efficacy of diosmin against subacute deltamethrin exposure. For this purpose, 40 male Wistar albino rats were used. The animals were assigned to the following 4 groups: control group (received corn oil vehicle alone), diosmin-treated group (50 mg/kg bw/day orally), deltamethrin-exposed group (5 mg/kg bw/day, orally) and coadministered group (5 mg/kg bw/day deltamethrin and 50 mg/kg bw/day diosmin, orally) for 28 days. Some lipid peroxidation/antioxidant status/biochemical markers were evaluated in blood/tissue (liver, kidney, brain, heart and testis) samples and the histopathological architecture was assessed. Compared with the control group, no alteration was detected in the parameters and histological findings of the diosmin-treated group. Deltamethrin toxicity was associated with significantly increased plasma, cardiac, hepatic, renal, cerebral and testicular levels of MDA and NO, and significantly decreased GSH levels (p < 0.05). Antioxidant enzyme status (SOD, CAT and GSH-Px activities) displayed either decrease or increase (p < 0.05). Significant increase was detected in AST and ALT activities and urea and creatinine levels (p < 0.05). The values of the group coadministered with deltamethrin and diosmin were similar to the values of the control group. Diosmin ameliorated deltamethrin-induced lymphocytic and histiocytic infiltration and subendocardial oedema in the heart. Combined administration also minimized hepatic, renal, testicular and cerebral histopathological findings. The alterations detected in various toxicological parameters correlated well with the histopathological changes observed in various organs. In conclusion, it is suggested that diosmin could provide protection against deltamethrin-induced toxicity and organ damage in rats.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Soyer Sarıca
- Hakan Çetinsaya Experimental and Clinical Research Center, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Chung S, Kim H, Choi H, Park JH, Hwang J. Comparative study of the effects of diosmin and diosmetin on fat accumulation, dyslipidemia, and glucose intolerance in mice fed a high-fat high-sucrose diet. Food Sci Nutr 2020; 8:5976-5984. [PMID: 33282249 PMCID: PMC7684606 DOI: 10.1002/fsn3.1883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
This study compared the effects of diosmin and its aglycone, diosmetin, on body weight, liver fat, serum cholesterol, and glucose intolerance in male C57BL/6 mice fed a high-fat high-sucrose (HFHS) diet for 12 weeks. The mice were divided into four groups that received the following diets: normal diet (ND), HFHS diet, HFHS diet with 0.5% diosmin, and HFHS diet with 0.5% diosmetin. The body weight increased significantly in the HFHS diet group but decreased significantly in the HFHS diet with 0.5% diosmin group. The diosmin and diosmetin treatment inhibited fat accumulation in liver and epididymal tissues, and improved glucose intolerance by lowering glucose levels during a glucose tolerance test; these effects were greater in the diosmin group than those in the diosmetin group. Furthermore, only diosmin significantly ameliorated dyslipidemia, by reducing TC and LDL-C levels, while diosmetin had little effect on these parameters. Taken together, the results showed that diosmin and diosmetin can prevent fat accumulation and glucose intolerance; however, diosmin was more effective and also showed an antidyslipidemic effect.
Collapse
Affiliation(s)
- Sangwon Chung
- Korea Food Research InstituteWanju‐gunRepublic of Korea
| | - Hyo‐Jin Kim
- Korea Food Research InstituteWanju‐gunRepublic of Korea
- Department of Food BiotechnologyUniversity of Science & TechnologyDaejeonRepublic of Korea
| | | | - Jae Ho Park
- Korea Food Research InstituteWanju‐gunRepublic of Korea
| | - Jin‐Taek Hwang
- Korea Food Research InstituteWanju‐gunRepublic of Korea
- Department of Food BiotechnologyUniversity of Science & TechnologyDaejeonRepublic of Korea
| |
Collapse
|
8
|
Role of Diosmin in protection against the oxidative stress induced damage by gamma-radiation in Wistar albino rats. Regul Toxicol Pharmacol 2020; 113:104622. [DOI: 10.1016/j.yrtph.2020.104622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
|
9
|
Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Wu L. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 2020; 11:8472-8492. [DOI: 10.1039/d0fo01598a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmin is a famous natural flavonoid for treating chronic venous insufficiency and varicose veins.
Collapse
Affiliation(s)
- Yizhou Zheng
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Rui Zhang
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Weimei Shi
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Linfu Li
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Hai Liu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Zhixi Chen
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Longhuo Wu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| |
Collapse
|
10
|
Vafa A, Afzal SM, Barnwal P, Rashid S, Shahid A, Alpashree, Islam J, Sultana S. Protective role of diosmin against testosterone propionate-induced prostatic hyperplasia in Wistar rats: Plausible role of oxidative stress and inflammation. Hum Exp Toxicol 2019; 39:1133-1146. [DOI: 10.1177/0960327119889655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an important key health concern for aging men. Polyphenolic compounds have been found to possess important roles in the inhibition of numerous ailments that involve reactive oxygen species and inflammation. Diosmin is a citrus flavone that possesses antioxidant, anti-inflammatory, antiproliferative, and anticancer activities, so based on these properties of diosmin, we decided to evaluate its effect on testosterone propionate (TP)-induced BPH. A total of 30 Wistar rats were randomly assigned to five groups having six animals in each. This study was of 28 days in which TP (5 mg kg−1) was administered to induce BPH in the last 10 days of the study. It was found that diosmin at the doses of 20 and 40 mg kg−1significantly reduced malondialdehyde and xanthine oxidase formation in a dose-dependent manner; however, it replenished catalase, glutathione (GSH), and GSH-dependent enzymes, that is, glutathione peroxidase, glutathione reductase, and glutathione- S-transferase significantly against TP-induced BPH. Further, immunohistochemical study showed that diosmin alleviated inflammatory markers (nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, and interleukin-6). It was also found that diosmin downregulated the expression of androgen receptor and decreased the prostate-specific antigen concentration dose-dependently, significantly against TP-induced BPH. Diosmin also restored histoarchitecture of the prostate in a dose-dependent manner. Findings from the present study revealed the protective role of diosmin against TP-induced BPH in Wistar rats.
Collapse
Affiliation(s)
- A Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - SM Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - P Barnwal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - S Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
- Department of Pharmacology and Toxicology, College of Pharmacy, Girls Section, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - A Shahid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Alpashree
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - J Islam
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| |
Collapse
|
11
|
El-Tahawy NFG, Abozaid SMM. The possible structural changes in the adrenal gland cortex after induction of hepatic ischemia-reperfusion injury in male albino rats: Light and electron microscopic study. J Cell Physiol 2019; 234:15487-15495. [PMID: 30684267 DOI: 10.1002/jcp.28196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The adrenal gland is an important endocrine gland in the body that secrets the adrenal hormones. One of the important clinical issues is the hepatic ischemia-reperfusion (IR) injury. Liver IR injury results in many distant organs dysfunctions such as lung, kidney, intestine, pancreas, and myocardium. The aim of the present study was to investigate the possible remote effects of hepatic IR on the structure of the adrenal cortex. Twenty healthy males, Sprague-Dawley albino rats aged 6-8 weeks were randomly divided into two groups (10 rats each): the sham control group (SC-group) and the ischemia-reperfusion group (IR-group). Sera were estimated for the following: aspartate transaminase (AST), alanine transaminase (ALT), lactic dehydrogenase (LDH), and corticosterone levels. Also oxidative markers such as malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α), and the antioxidative enzyme, catalase were measured. Adrenal glands were processed for light and transmission electron microscopic study. The results showed a significant increase in serum liver enzymes (AST, ALT, and LDH), corticosterone, MDA, and TNF-α levels and a significant decrease in serum levels of catalase in IR-group compared with SC-group. Adrenal cortical tissue of IR-group showed the loss of normal appearance. Some cells of zona glomerulosa and most of the zona fasciculata cells appeared swollen and degenerated with highly vacuolated cytoplasm. Other cells were shrunken with deeply acidophilic cytoplasm and pyknotic nuclei. Degenerated mitochondria with disrupted cristae, lipid droplets were confluent and dilated smooth endoplasmic reticulum were seen. Few zona reticularis cells had the dark nucleus and cytoplasmic vacuolations. In the different zones, blood capillaries were markedly congested and some inflammatory cells infiltrations were observed. Liver IR affected the structure of the adrenal cortex.
Collapse
|
12
|
Ağır MS, Eraslan G. The effect of diosmin against liver damage caused by cadmium in rats. J Food Biochem 2019; 43:e12966. [PMID: 31489662 DOI: 10.1111/jfbc.12966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
A total of 40, male Wistar Albino, 2-3-months-old rats were used and divided into four groups. Control group received the vehicle alone, diosmin group received 100 mg/kg.bw diosmin, the cadmium group received 200 ppm cadmium, cadmium plus diosmin group received 200 ppm cadmium, and 100 mg/kg.bw diosmin for 30 days. Some biochemical parameters (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase) and oxidative stress parameters (malondialdehyde [MDA], nitric oxide [NO], superoxide dismutase [SOD], catalase [CAT], gluthatione peroxidase [GSH-Px], and glutathione [GSH]) were analyzed in the samples. Histo-pathological findings were evaluated in the liver. The body weights and liver weights of the animals were measured. The MDA and NO levels and biochemical enzyme activities examined were increased, whereas SOD, CAT, and GSH-Px activities and GSH levels decreased in cadmium-exposed group. There were also negative changes in body weight, liver weight, and liver tissue histo-phathology. Positive improvements were observed in all these parameters evaluated of the group co-administered cadmium and diosmin. PRACTICAL APPLICATIONS: Cadmium is one of the common environmental pollutants. Diosmin is a type of flavonoid found mainly in citrus fruits. It can also be produced from hesperidine. This compound is used for medical purposes and also has strong antioxidant properties. One of the toxic effects mechanisms of cadmium is oxidative stress and causes liver damage with different pathways. This compound can be used as a supporting agent in addition to the main treatment options against liver damage in case of exposure to possible cadmium. This flavonoid can also be taken with food for prophylactic purposes.
Collapse
Affiliation(s)
- Mehmet Selim Ağır
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Eraslan G, Sarıca ZS, Bayram LÇ, Tekeli MY, Kanbur M, Karabacak M. The effects of diosmin on aflatoxin-induced liver and kidney damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27931-27941. [PMID: 28988357 DOI: 10.1007/s11356-017-0232-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin is among the natural toxins that cause serious side effects on living things. Diosmin is also one of the compounds with broad pharmacological effects. In this study, the effects on the oxidant/antioxidant system of 50 mg/kg body weight/day dose of diosmin, aflatoxin (500 μg/kg body weight/day), and combined aflatoxin (500 μg/kg body weight/day) plus diosmin (50 mg/kg body weight/day) given to the stomach via catheter female adult Wistar Albino rats is examined. Forty rats were used in the experiment, and these animals were randomly allocated to four equal groups. The test phase lasted 21 days, and blood samples and tissue (liver and kidney) samples were taken after this period was over. Some biochemical parameters (glucose, triglyceride, cholesterol, blood urea nitrogen, creatinine, uric acid, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin) and levels of malondialdehyde, nitric oxide, and 4-hydroxynonenal and activities of superoxide dismutase, catalase, and glutathione peroxidase were analyzed in the samples. The aflatoxin administered over the period indicated a significant increase in levels of malondialdehyde (MDA), nitric oxide (NO), and 4-hydroxynonenal (4-HNE) in all tissues and blood samples. Therewithal, the activity of antioxidant enzymes showed a change in the decreasing direction. Biochemical parameters of the group in which aflatoxin were administered alone changed unfavorably. Parallel effects were also observed in the histopathological findings of this group. The results showed that aflatoxin changed antioxidant/oxidant balance in favor of oxidant and eventually led to lipid peroxidation. Diosmin administration to aflatoxin-treated animals resulted in positive changes in antioxidant enzyme activities while the levels of MDA, NO, and 4-HNE were reduced in all tissues and blood samples examined. Diosmin alleviates the oxidative stress caused by aflatoxin. Similar improvement was observed in biochemical parameters of this group as well as in liver and kidney histopathology. No significant change was observed in the group treated with diosmin alone in terms of the parameters examined and histologic findings. As a result, diosmin may be included in compounds that can be used as a therapeutic and prophylactic agent in the event of the formation of aflatoxin exposure and poisoning in animals.
Collapse
Affiliation(s)
- Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Zeynep Soyer Sarıca
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Latife Çakır Bayram
- Faculty of Veterinary Medicine, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Mürsel Karabacak
- Safiye Çıkrıkçıoğlu Vocational Collage, Department of Animal Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Saad AS, Mohamed KAA. Diosmin versus cabergoline for prevention of ovarian hyperstimulation syndrome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Quercetin and tin protoporphyrin attenuate hepatic ischemia reperfusion injury: role of HO-1. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:871-881. [DOI: 10.1007/s00210-017-1389-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
|
16
|
Ganesan K, Jayachandran M, Xu B. A critical review on hepatoprotective effects of bioactive food components. Crit Rev Food Sci Nutr 2017; 58:1165-1229. [DOI: 10.1080/10408398.2016.1244154] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kumar Ganesan
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Muthukumaran Jayachandran
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
17
|
Ahmed S, Mundhe N, Borgohain M, Chowdhury L, Kwatra M, Bolshette N, Ahmed A, Lahkar M. Diosmin Modulates the NF-kB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy. Inflammation 2017; 39:1783-97. [PMID: 27492452 DOI: 10.1007/s10753-016-0413-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperglycaemia-mediated oxidative stress plays an imperative role in the progression of diabetic nephropathy. NF-kB is an important transcription factor in eukaryotes which regulates a diverse array of cellular process, including inflammation, immunological response, apoptosis, growth and development. Increased expression of NF-kB plays a vital role in the pathogenesis of many inflammatory diseases including diabetic nephropathy. Hence, the present study was designed to explore the nephroprotective nature of diosmin by assessing the various biochemical parameters, markers of oxidative stress and proinflammatory cytokine levels in alloxan-induced diabetic Wistar rats. Type 2 diabetes was induced in Wistar rats by single intraperitoneal injection of alloxan (120 mg/kg body weight). Seventy-two hours after the conformation of diabetes (blood glucose level ≥ 250 mg/dl), the rats were segregated into four groups, each group having six animals. Diabetic rats were treated with diosmin at a dose of 50 mg and 100 mg/kg body weight respectively. After the 28th day of treatment, rats were sacrificed, blood serum, plasma and kidney tissue were collected for various biochemical analysis. Inflammatory cytokine levels were measured through ELISA kit. Diosmin treatment produces significant reduction in the blood glucose and plasma insulin level and increases the body weight when compared with diabetic rats. Elevated level of malondialdehyde (MDA) and decrease levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and nitric oxide (NO) were significantly restored after 28 days of diosmin treatment. Diosmin treatment group also restores the normal architecture of the kidney tissue which was confirmed by histopathological examination. Moreover, oral administration of diosmin shows a significant normalization in the level of NF-kB, proving its pivotal role in maintaining renal function. The above ameliorative effects were more pronounced with diosmin at a dose of 100 mg/kg body weight. The above results permit us to conclude that treatment with diosmin halts hyperglycaemia-mediated oxidative stress and decline in pro-inflammatory cytokines and thus has beneficial anti-diabetic activity.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.
| | - Nitin Mundhe
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Manash Borgohain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Liakat Chowdhury
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Mohit Kwatra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Nityanand Bolshette
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Anwaruddin Ahmed
- Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka, 560074, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.,Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India
| |
Collapse
|
18
|
Hasan HF, Abdel-Rafei MK, Galal SM. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering miR-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol 2016; 95:400-414. [PMID: 28177765 DOI: 10.1139/bcb-2016-0142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Liver fibrosis is one of the major complications from upper right quadrant radiotherapy. MicroRNA-17-5p (miR-17-5p) is hypothesized to act as a regulator of hepatic stellate cell (HSCs) activation by activation of the canonical Wnt-β-catenin pathway. Diosmin (Dios), a citrus bioflavonoid, is known to possess potent antioxidant, anti-inflammatory, and anti-apoptotic properties. PURPOSE To explore the molecular mechanisms that underlie radiation-induced liver fibrosis, and to evaluate the possible influence of Dios on the miR-17-5p-Wnt-β-catenin signaling axis during fibrogenesis provoked by irradiation (IRR) in rats. Also, the effect of Dios on hepatic peroxisome proliferator activated receptor-γ (PPAR-γ) expression as a regulator for HSC activation was considered. METHODS We administered 100 mg·(kg body mass)-1·day-1 (per oral) of Dios were administered to IRR-exposed rats (overall dose of 12 Gy on 6 fractions of 2 Gy each) for 6 successive weeks. RESULTS Data analysis revealed that Dios treatment mitigated oxidative stress, enhanced antioxidant defenses, alleviated hepatic inflammatory responses, abrogated pro-fibrogenic cytokines, and stimulated PPAR-γ expression. Dios treatment repressed the miR-17-5p activated Wnt-β-catenin signaling induced by IRR. Moreover, Dios treatment restored the normal hepatic architecture and reversed pathological alterations induced by IRR. CONCLUSION We hypothesize that the stimulation of PPAR-γ expression and interference with miR-17-5p activated Wnt-β-catenin signaling mediates the antifibrotic properties of Dios.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Shereen Mohamed Galal
- b Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
19
|
Abdel-Rafei MK, Amin MM, Hasan HF. Novel effect of Daflon and low-dose γ-radiation in modulation of thioacetamide-induced hepatic encephalopathy in male albino rats. Hum Exp Toxicol 2016; 36:62-81. [PMID: 26987350 DOI: 10.1177/0960327116637657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was designed to evaluate the hepato and neuroprotective activity of Daflon and low-dose γ radiation on thioacetamide (TAA)-induced liver damage and hepatic encephalopathy (HE) in rats. Effect of daily Daflon treatment (100 mg/kg body weight, Per OS (p.o.) for consecutive 3 days) and/or fractionated low-dose γ-radiation (LDR; 0.25 Gy, twice the total dose of 0.5 Gy at the 1st and 3rd day, respectively) was evaluated against TAA (300 mg/kg, intraperitoneal × 3) induced liver damage and HE in rats. Serum aspartate transaminase, alanine transaminase, γ-glutamyltransferase, total bilirubin, ammonia, and manganese were estimated to evaluate liver function. In addition, malondialdehyde (MDA) as well as reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) were determined to assess antioxidant capacity in liver tissue. Moreover, hepatic apoptotic markers (cysteine-dependent aspartate-directed proteases 3, 8 (caspase-3, 8) and cytochrome C) were estimated to indicate hepatic apoptosis. HE was evaluated through the determination of whole brain ammonia, manganese, MDA, GSH, GPX, SOD, CAT, and caspase-3. The cognitive and locomotor deficits were assessed via step through passive avoidance test, activity cage (actophotometer), γ-aminobutyric acid, and N-methyl-d-aspartate/adenosine triphosphate-neuronal nitric oxide synthase/nitric oxide-cyclic guanosine monophosphate axis in rats' cerebella and hippocampi. The involvement of hypoxia inducible factor-1α, aquaporine-4, and matrix metalloproteinase 9 in association with the brain water content (%) in the whole brain as an index for brain edema was also evaluated. The obtained results showed a marked amelioration of the aforementioned biochemical parameters and behavioral tasks which is supported by histopathological and immunohistochemical examination. It could be concluded that Daflon and LDR afforded hepatoprotection and neuroprotection against TAA-induced acute liver damage and HE.
Collapse
Affiliation(s)
- MKh Abdel-Rafei
- 1 Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr city, Cairo, Egypt
| | - M M Amin
- 2 Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - H F Hasan
- 1 Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr city, Cairo, Egypt
| |
Collapse
|
20
|
Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, Xue J, Yu J, Yang Y, Cui H, Cui L, Wang L, Wang X. Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience 2014; 268:318-27. [DOI: 10.1016/j.neuroscience.2014.03.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
|