1
|
Wu J, Wu W, Qin J, Chen Z, Zhong R, Guo P, Fan S. Exploring the impact of cuproptosis on prostate cancer prognosis via RNA methylation regulation based on single cell and bulk RNA sequencing data. Front Pharmacol 2025; 16:1573611. [PMID: 40235543 PMCID: PMC11996820 DOI: 10.3389/fphar.2025.1573611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Background Cuproptosis, along with RNA methylation regulators, has recently come to the fore as innovative mechanisms governing cell death, exerting profound impact on the onset and progression of multiple cancers. Nonetheless, the prognostic implications and underlying regulatory mechanisms of them associated with prostate cancer (PCa) remain to be thoroughly investigated. Methods Genomic and clinical data for PCa from The Cancer Genome Atlas datasets were analyzed to identify a prognostic model through univariate and Least Absolute Shrinkage and Selection Operator Cox regression analyses that were validated utilizing external datasets. We used receiver operating characteristic curves and C-index to evaluate the accuracy of our prognostic model. In conjunction with this, we conducted single-cell RNA sequencing (scRNA-seq) analyses to investigate underlying mechanisms and evaluate the degree of immune infiltration, as well as to assess patients' responses to diverse chemotherapy agents. Especially, qPCR assay was utilized to unveil the expression of signature genes in PCa. Results We meticulously selected six Cuproptosis-Associated RNA Methylation Regulators (CARMRs) to establish a risk prognosis model, which was further verified to obtain enhanced predictive capacity in external validation cohorts. Insights from immune infiltration and scRNA-seq analyses have elucidated the immune characteristics of PCa, and highlighted the immunosuppressive role of regulatory T cells on immune response. Additionally, drug susceptibility analysis demonstrated that patients with PCa in the low-risk category derived better benefit from bicalutamide treatment, whereas those in the high-risk group exhibited a favor response to adriamycin and docetaxel treatments. The qPCR and immunohistochemistry (IHC) staining assays also reveal the a dramatically altered expression pattern of TRDMT1 and ALYREF in PCa tissues. Conclusion In general, we established a model involving CARMRs that can better predict the risk of recurrence of PCa and have identified the possible mechanisms affecting PCa progression, thereby promoting further research in this field.
Collapse
Affiliation(s)
- Junchao Wu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Wentian Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaxuan Qin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Ziqi Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Rongfang Zhong
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Guo
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Wuxi, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| |
Collapse
|
2
|
Zhao Y, Yang X, Yao F, Ouyang Z, Hu W, Li L, Cheng J, Wang K, Ding J, Zheng L, Qu B, Sun C, Li S, Jiang C, Chen Y, Zhou R, Hu W. A Matrigel-Free 3D Chondrocytic Spheroid Model for Rheumatoid Arthritis-Associated Synoviocytes Invasion Studies. J Inflamm Res 2025; 18:4319-4334. [PMID: 40162078 PMCID: PMC11952051 DOI: 10.2147/jir.s504701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Background The primary pathology of rheumatoid arthritis (RA) involves the invasion of the extracellular matrix (ECM) of articular cartilage by inflammation-activated fibroblast-like synoviocytes (FLS), a process targeted by most RA therapeutic drugs. However, the absence of an efficient in vitro model for evaluating FLS invasion hinders relevant drug screening and mechanism research. To address this, a novel three-dimensional (3D) chondrocytic spheroid model that mimics cartilage ECM has been developed, along with corresponding indices to quantify synoviocytes invasion. Methods The matrigel-free 3D chondrocytic spheroid model was developed using an ultra-low attachment plate. The model was characterized using transcriptome sequencing, immunofluorescent staining. To explore the feasibility of this 3D chondrocytic spheroid model for evaluating the invasive capacity of synoviocytes, multi-interference strategies, including ADAMTS5 gene overexpression, inflammatory cytokine stimulation, and anti-inflammatory drug (Etanercept) treatment were involved. Additionally, specific indices-Invasion Depth Ratio (IDR), Invasion Counts (IC), Invasion Ratio (IR), and Invasion Area Ratio (IAR)-were designed to quantify synoviocytes invasion. Results The 3D culture environment is more suitable for cartilage ECM synthesis by increasing cartilage anabolism-related gene (COL2A1) and reducing catabolism-related genes (ADAMTS5, MMP3, CCL2 and CDKN2A) expression. Moreover, the optimal conditions for developing the 3D chondrocytic spheroid model were identified. This model was sensitive to gene, inflammation and drug interference. Increased IDR, IC, IR and IAR was observed in ADAMTS5 overexpressed- and IL-1β-treated chondrocytic spheroid. Further, Etanercept could inhibit TNF-α induced synoviocytes invasion of chondrocytic spheroid. Conclusion This matrigel-free 3D chondrocytic spheroid model offers an ideal platform for innovative drug screening and pathogenesis studies focused on synoviocytes invasion of cartilage.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Ziwei Ouyang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Weirong Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Lin Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Juan Cheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jie Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Biao Qu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Cheng Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Chen Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yanan Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
3
|
Liu X, Fan H, Chen Z, Liu C. Exploring the significance and potential mechanisms of hippo pathway-associated genes in prognosis of glioma patients. Discov Oncol 2024; 15:536. [PMID: 39382606 PMCID: PMC11464986 DOI: 10.1007/s12672-024-01391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE Despite the efforts of countless researchers to develop glioma treatment strategies, the current therapeutic effect of glioma is still not ideal, and it is necessary to further explore the mechanism to guide treatment. Thus, this study aims to introduce a novel approach for predicting patient prognosis and guiding further treatment interventions. METHODS Initially, we conducted a differential gene expression analysis to identify Hippo pathway-associated genes overexpressed in tumors and determined genes correlated with prognosis. Subsequently, employing cluster analysis, we categorized samples into two groups and performed further analyses including prediction, immune cell infiltration abundance, and drug response rates. We utilized weighted gene co-expression analysis to reveal gene sets with high co-variation, delineate inter-sample gene correlation patterns, and conduct enrichment analysis. Prognostic models were built using ten machine learning algorithms combined in 101 different combinations, followed by evaluation and validation. Immune infiltration analysis, differential expression analysis of depleted T cell-related markers, drug sensitivity analysis, and exploration of pathway dysregulation were performed for different risk groups. Quality control and batch integration were performed, and single-cell data were analyzed using dimensionality reduction clustering algorithms and annotation tools to evaluate the activity of the prognostic model in malignant cells. RESULTS We conducted data filtering to identify genes overexpressed in tumors, intersecting these genes with Hippo pathway-related genes, identifying 62 genes correlated with prognosis, and performing cluster analysis to divide tumor tissues into two groups. Cluster 2 exhibited a poorer prognosis and demonstrated differences in immune cell infiltration. Utilizing weighted gene co-expression analysis on Cluster 2, we identified gene modules, conducted functional enrichment analysis, and delineated pathways. Employing a combined model based on ten machine learning algorithm combinations, we selected the optimal prognostic model system and validated the model's predictive ability within the dataset. Through immune-related analysis and drug sensitivity analysis, we uncovered differences in immune infiltration and varying sensitivities to chemotherapy drugs. Additionally, the enrichment analysis of gene set revealed discrepancies in upregulation within relevant pathways between the high and low-risk groups. Finally, annotation and evaluation of malignant cells via single-cell analysis showed increased activity of the prognostic model and variations in distribution across different prognostic levels in malignant cells. CONCLUSION This study introduces a novel approach utilizing the Hippo pathway and associated genes for glioma prognosis research, demonstrating the potential and significance of this method in evaluating the outcome for patients with glioma. These findings hold substantial clinical significance in guiding therapy and predicting outcomes for individuals diagnosed with glioma, offering significant clinical utility.
Collapse
Affiliation(s)
- XuKai Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Hongjun Fan
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Zebo Chen
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China.
| |
Collapse
|
4
|
Zhang H, Qiao Q, Zhao Y, Zhang L, Shi J, Wang N, Li Z, Shan S. Expression and Purification of Recombinant Bowman-Birk Trypsin Inhibitor from Foxtail Millet Bran and Its Anticolorectal Cancer Effect In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10439-10450. [PMID: 38676695 DOI: 10.1021/acs.jafc.3c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-β-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yaru Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|