1
|
Gold MS, Blum K, Bowirrat A, Pinhasov A, Bagchi D, Dennen CA, Thanos PK, Hanna C, Lewandrowski KU, Sharafshah A, Elman I, Badgaiyan RD. A historical perspective on clonidine as an alpha-2A receptor agonist in the treatment of addictive behaviors: Focus on opioid dependence. INNOSC THERANOSTICS & PHARMACOLOGICAL SCIENCES 2024; 7:1918. [PMID: 39119149 PMCID: PMC11308626 DOI: 10.36922/itps.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Clonidine operates through agonism at the alpha-2A receptor, a specific subtype of the alpha-2-adrenergic receptor located predominantly in the prefrontal cortex. By inhibiting the release of norepinephrine, which is responsible for withdrawal symptoms, clonidine effectively addresses withdrawal-related conditions such as anxiety, hypertension, and tachycardia. The groundbreaking work by Gold et al. demonstrated clonidine's ability to counteract the effects of locus coeruleus stimulation, reshaping the understanding of opioid withdrawal within the field. In the 1980s, the efficacy of clonidine in facilitating the transition to long-acting injectable naltrexone was confirmed for individuals motivated to overcome opioid use disorders (OUDs), including physicians and executives. Despite challenges with compliance, naltrexone offers sustained blockade of opioid receptors, reducing the risk of overdose, intoxication, and relapse in motivated patients in recovery. The development of clonidine and naltrexone as treatment modalities for OUDs, and potentially other addictions, including behavioral ones, underscores the potential for translating neurobiological advancements from preclinical models (bench) to clinical practice (bedside), ushering in innovative approaches to addiction treatment.
Collapse
Affiliation(s)
- Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, California, United States of America
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
- Department of Psychology, Faculty of Education and Psychology, Institute of Psychology, Eötvös Loránd University Budapest, Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, California, United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
- Department of Clinical Psychology and Addiction, Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, Vermont, United States of America
- Department of Psychiatry, Wright University, Boonshoft School of Medicine, Dayton, Ohio, United States of America
- Division of Personalized Medicine, Ketamine Infusion Clinic of South Florida, Pompano, Florida, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Debasis Bagchi
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, Florida, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, Pennsylvania, United States of America
| | - Panayotis K. Thanos
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kai-Uwe Lewandrowski
- Division of Personalized Pain Therapy Research, Center for Advanced Spine Care of Southern Arizona, Tucson, Arizona, United States of America
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá, Colombia
- Department of Orthopedics, Hospital Universitário Gaffree Guinle Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Gilan, Iran
| | - Igor Elman
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Psychiatry, School of Medicine, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Mt. Sinai School of Medicine, New York City, New York, United States of America
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Blum K, Baron D, McLaughlin T, Thanos PK, Dennen C, Ceccanti M, Braverman ER, Sharafshah A, Lewandrowski KU, Giordano J, Badgaiyan RD. Summary Document Research on RDS Anti-addiction Modeling: Annotated Bibliography. JOURNAL OF ADDICTION PSYCHIATRY 2024; 8:1-33. [PMID: 38765881 PMCID: PMC11100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Annotated bibliography of genetic addiction risk severity (GARS) publications, pro-dopamine regulation in nutraceuticals (KB220 nutraceutical variants), and policy documents. Further research is required to encourage the field to consider "Reward Deficiency Syndrome (RDS) Anti-addiction Modeling" which involves early risk identification by means of genetic assessment similar to GARS, followed by induction of dopamine homeostasis by means of genetically guided pro-dopamine regulation similar to KB220. These results suggest that genetically based treatments may be a missing piece in the treatment of substance use disorder (SUD).
Collapse
Affiliation(s)
- Kenneth Blum
- Center for Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - David Baron
- Center for Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Thomas McLaughlin
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York, Buffalo, NY, USA
| | - Catherine Dennen
- Department of Family Medicine, Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Mauro Ceccanti
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Eric R. Braverman
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Alireza Sharafshah
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, School of Science and Biotechnology, University of Isfahan, Isfahan, Iran
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá D.C. Colombia
| | - John Giordano
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
- Division of Recovery Science, JC’S Recovery Center, Hollywood, Florida, USA
| | - Rajendra D. Badgaiyan
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| |
Collapse
|
3
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Thanos PK, Hanna C, Mihalkovic A, Hoffman AB, Posner AR, Busch J, Smith C, Badgaiyan RD, Blum K, Baron D, Mastrandrea LD, Quattrin T. The First Exploratory Personalized Medicine Approach to Improve Bariatric Surgery Outcomes Utilizing Psychosocial and Genetic Risk Assessments: Encouraging Clinical Research. J Pers Med 2023; 13:1164. [PMID: 37511777 PMCID: PMC10381606 DOI: 10.3390/jpm13071164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It is predicted that by 2030, globally, an estimated 2.16 billion adults will be overweight, and 1.12 billion will be obese. This study examined genetic data regarding Reward Deficiency Syndrome (RDS) to evaluate their usefulness in counselling patients undergoing bariatric surgery and gathered preliminary data on the potential use in predicting short term (6-month) weight loss outcomes. Methods: Patients undergoing bariatric surgery (n = 34) were examined for Genetic Addiction Risk Severity (GARS) [measures the presence of risk alleles associated with RDS]; as well as their psychosocial traits (questionnaires). BMI changes and sociodemographic data were abstracted from Electronic Health Records. Results: Subjects showed ∆BMI (M = 10.0 ± 1.05 kg/m2) and a mean % excess weight loss (56 ± 13.8%). In addition, 76% of subjects had GARS scores above seven. The homozygote risk alleles for MAO (rs768062321) and DRD1 (rs4532) showed a 38% and 47% prevalence among the subjects. Of the 11 risk alleles identified by GARS, the DRD4 risk allele (rs1800955), was significantly correlated with change in weight and BMI six months post-surgery. We identified correlations with individual risk alleles and psychosocial trait scores. The COMT risk allele (rs4680) showed a negative correlation with EEI scores (r = -0.4983, p < 0.05) and PSQI scores (r = -0.5482, p < 0.05). The GABRB3 risk allele (rs764926719) correlated positively with EEI (r = 0.6161, p < 0.01) and FCQ scores (r = 0.6373, p < 0.01). The OPRM1 risk allele showed a positive correlation with the DERS score (r = 0.5228, p < 0.05). We also identified correlations between DERS and BMI change (r = 0.61; p < 0.01). Conclusions: These data support the potential benefit of a personalized medicinal approach inclusive of genetic testing and psychosocial trait questionnaires when counselling patients with obesity considering bariatric surgery. Future research will explore epigenetic factors that contribute to outcomes of bariatric surgery.
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Aaron B. Hoffman
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Alan R. Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - John Busch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - Caroline Smith
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Kenneth Blum
- Division of Nutrigenomics, SpliceGen, Therapeutics, Inc., Austin, TX 78701, USA;
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 23-27, 1075 Budapest, Hungary
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - David Baron
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
| | - Lucy D. Mastrandrea
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Teresa Quattrin
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| |
Collapse
|
5
|
Gilley ED, Bowirrat A, Gupta A, Giordano J, A Dennen C, R Braverman E, D Badgaiyan R, McLaughlin T, Baron D, Blum K. The Future is Now for Precision Genomic Addiction Medicine as a Frontline Modality for Inducing "Dopamine Homeostasis" in Reward Deficiency Syndrome (RDS). Curr Pharm Biotechnol 2023; 25:CPB-EPUB-131252. [PMID: 37102488 DOI: 10.2174/1389201024666230427111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION In this genomic era of addiction medicine, ideal treatment planning begins with genetic screening to determine neurogenetic antecedents of the Reward Deficiency Syndrome (RDS) phenotype. Patients suffering from endotype addictions, both substance and behavioral, and other mental health/comorbid disorders that share the neurobiological commonality of dopamine dysfunction, are ideal candidates for RDS solutions that facilitate dopamine homeostasis, addressing the cause, rather than symptoms. OBJECTIVE Our goal is to promote the interplay of molecular biology and recovery as well as provide evidence linked to RDS and its scientific basis to primary care physicians and others. METHODS This was an observational case study with a retrospective chart review in which an RDS treatment plan that utilized Genetic Addiction Risk Severity (GARS) analysis to evaluate neurogenetic challenges was used in order to develop appropriate short- and long-term pharmaceutical and nutraceutical interventions. RESULTS A Substance Use Disorder (SUD) treatment-resistant patient was successfully treated utilizing the GARS test and RDS science. CONCLUSION The RDS Solution Focused Brief Therapy (RDS-SFBT) and the RDS Severity of Symptoms Scale (SOS) may provide clinicians with a useful tool for establishing neurological balance and helping patients to achieve self-efficacy, self-actualization, and prosperity.
Collapse
Affiliation(s)
- Elizabeth D Gilley
- The Elle Foundation, West Palm Beach, Florida, FL, USA
- The Kenneth Blum Institute of Behavior & Neurogenetics, Austin, TX, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - John Giordano
- The National Institute of Holistic & Addiction Studies, North Miami Beach, FL, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Eric R Braverman
- The Kenneth Blum Institute of Behavior & Neurogenetics, Austin, TX, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Mt. Sinai University School of Medicine, NYC, NY, USA
- Department of Psychiatry, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Thomas McLaughlin
- The Kenneth Blum Institute of Behavior & Neurogenetics, Austin, TX, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA, USA
| | - Kenneth Blum
- The Kenneth Blum Institute of Behavior & Neurogenetics, Austin, TX, USA
- The National Institute of Holistic & Addiction Studies, North Miami Beach, FL, USA
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA, USA
| |
Collapse
|
6
|
Ceccanti M, Blum K, Bowirrat A, Dennen CA, Braverman ER, Baron D, Mclaughlin T, Giordano J, Gupta A, Downs BW, Bagchi D, Barh D, Elman I, Thanos PK, Badgaiyan RD, Edwards D, Gold MS. Future Newborns with Opioid-Induced Neonatal Abstinence Syndrome (NAS) Could Be Assessed with the Genetic Addiction Risk Severity (GARS) Test and Potentially Treated Using Precision Amino-Acid Enkephalinase Inhibition Therapy (KB220) as a Frontline Modality Instead of Potent Opioids. J Pers Med 2022; 12:2015. [PMID: 36556236 PMCID: PMC9782293 DOI: 10.3390/jpm12122015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In this nonsystematic review and opinion, including articles primarily selected from PubMed, we examine the pharmacological and nonpharmacological treatments of neonatal abstinence syndrome (NAS) in order to craft a reasonable opinion to help forge a paradigm shift in the treatment and prevention of primarily opioid-induced NAS. Newborns of individuals who use illicit and licit substances during pregnancy are at risk for withdrawal, also known as NAS. In the US, the reported prevalence of NAS has increased from 4.0 per 1000 hospital births in 2010 to 7.3 per 1000 hospital births in 2017, which is an 82% increase. The management of NAS is varied and involves a combination of nonpharmacologic and pharmacologic therapy. The preferred first-line pharmacological treatment for NAS is opioid therapy, specifically morphine, and the goal is the short-term improvement in NAS symptomatology. Nonpharmacological therapies are individualized and typically focus on general care measures, the newborn-parent/caregiver relationship, the environment, and feeding. When used appropriately, nonpharmacologic therapies can help newborns with NAS avoid or reduce the amount of pharmacologic therapy required and the length of hospitalization. In addition, genetic polymorphisms of the catechol-o-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genes appear to affect the length of stay and the need for pharmacotherapy in newborns with prenatal opioid exposure. Therefore, based on this extensive literature and additional research, this team of coauthors suggests that, in the future, in addition to the current nonpharmacological therapies, patients with opioid-induced NAS should undergo genetic assessment (i.e., the genetic addiction risk severity (GARS) test), which can subsequently be used to guide DNA-directed precision amino-acid enkephalinase inhibition (KB220) therapy as a frontline modality instead of potent opioids.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, 00185 Rome, Italy
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Division of Addiction Research & Education, Center for Mental Health & Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, H-1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Reward Deficiency Clinics of America, Austin, TX 78701, USA
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
- Department of Precision Behavioral Management, Transplicegen Therapeutics, Inc., LLC., Austin, TX 78701, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19107, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Mental Health & Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | | | - John Giordano
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Ketamine Infusion Clinic of South Florida, Pompano Beach, FL 33062, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Bernard W. Downs
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - Debasis Bagchi
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard School of Medicine, Boston, MA 02115, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Drew Edwards
- Neurogenesis Project, Jacksonville, FL 32223, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Blum K, Han D, Gupta A, Baron D, Braverman ER, Dennen CA, Kazmi S, Llanos-Gomez L, Badgaiyan RD, Elman I, Thanos PK, Downs BW, Bagchi D, Gondre-Lewis MC, Gold MS, Bowirrat A. Statistical Validation of Risk Alleles in Genetic Addiction Risk Severity (GARS) Test: Early Identification of Risk for Alcohol Use Disorder (AUD) in 74,566 Case-Control Subjects. J Pers Med 2022; 12:1385. [PMID: 36143170 PMCID: PMC9505592 DOI: 10.3390/jpm12091385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including GWAS. To develop an accurate test to help identify those at risk for at least Alcohol Use Disorder (AUD), Blum's group developed the Genetic Addiction Risk Severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions published from 1990 until 2021. This analysis calculated the Hardy-Weinberg Equilibrium of each polymorphism in cases and controls. If available, the Pearson's χ2 test or Fisher's exact test was applied to comparisons of the gender, genotype, and allele distribution. The statistical analyses found the OR, 95% CI for OR, and a post-risk for 8% estimation of the population's alcoholism prevalence revealed a significant detection. The OR results showed significance for DRD2, DRD3, DRD4, DAT1, COMT, OPRM1, and 5HTT at 5%. While most of the research related to GARS is derived from our laboratory, we are encouraging more independent research to confirm our findings.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Dayton VA Medical Centre, Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH 45324, USA
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| | - Eric R. Braverman
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19114, USA
| | - Shan Kazmi
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| | - Luis Llanos-Gomez
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Bill W. Downs
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
- Department of Pharmaceutical Science, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Marjorie C. Gondre-Lewis
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
8
|
Madigan MA, Gupta A, Bowirrat A, Baron D, Badgaiyan RD, Elman I, Dennen CA, Braverman ER, Gold MS, Blum K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6395. [PMID: 35681980 PMCID: PMC9180535 DOI: 10.3390/ijerph19116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality are presented. Precision Behavioral Management (PBM), conceptualized initially as Precision Addiction Management (PAM), certainly deserves consideration as an important modality for the treatment of impaired cognitive control in reward processing as manifested in people with neurobiologically expressed Reward Deficiency Syndrome (RDS).
Collapse
Affiliation(s)
- Margaret A. Madigan
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - David Baron
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton VA Medical Centre, Dayton, OH 45324, USA
| |
Collapse
|
9
|
Blum K, Kazmi S, Modestino EJ, Downs BW, Bagchi D, Baron D, McLaughlin T, Green R, Jalali R, Thanos PK, Elman I, Badgaiyan RD, Bowirrat A, Gold MS. A Novel Precision Approach to Overcome the "Addiction Pandemic" by Incorporating Genetic Addiction Risk Severity (GARS) and Dopamine Homeostasis Restoration. J Pers Med 2021; 11:jpm11030212. [PMID: 33809702 PMCID: PMC8002215 DOI: 10.3390/jpm11030212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
This article describes a unique therapeutic precision intervention, a formulation of enkephalinase inhibitors, enkephalin, and dopamine-releasing neuronutrients, to induce dopamine homeostasis for detoxification and treatment of individuals genetically predisposed to developing reward deficiency syndrome (RDS). The formulations are based on the results of the addiction risk severity (GARS) test. Based on both neurogenetic and epigenetic evidence, the test evaluates the presence of reward genes and risk alleles. Existing evidence demonstrates that the novel genetic risk testing system can successfully stratify the potential for developing opioid use disorder (OUD) related risks or before initiating opioid analgesic therapy and RDS risk for people in recovery. In the case of opioid use disorders, long-term maintenance agonist treatments like methadone and buprenorphine may create RDS, or RDS may have been in existence, but not recognized. The test will also assess the potential for benefit from medication-assisted treatment with dopamine augmentation. RDS methodology holds a strong promise for reducing the burden of addictive disorders for individuals, their families, and society as a whole by guiding the restoration of dopamine homeostasisthrough anti-reward allostatic neuroadaptations. WC 175.
Collapse
Affiliation(s)
- Kenneth Blum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
- Institute of Psychology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45435, USA
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-619p-890-2167
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | | | - Bill William Downs
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, Lederach, PA 19450, USA; (B.W.D.); (D.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - David Baron
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (S.K.); (D.B.)
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Precision Translational Medicine (Division of Ivitalize), San Antonio, TX 78249, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX 78712, USA; (T.M.); (R.G.); (R.J.)
- Center for Genomic Testing, Geneus Health LLC, San Antonio, TX 78249, USA
| | - Panayotis K. Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, University at Buffalo, Buffalo, NY 14260, USA;
| | - Igor Elman
- Department of Psychiatry, Harvard University, School of Medicine, Cambridge, MA 02142, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital and Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78249, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
10
|
Blum K, Baron D, Jalali R, Modestino EJ, Steinberg B, Elman I, Badgaiyan RD, Gold MS. Polygenic and multi locus heritability of alcoholism: Novel therapeutic targets to overcome psychological deficits. ACTA ACUST UNITED AC 2020; 7. [PMID: 34707891 PMCID: PMC8547332 DOI: 10.15761/jsin.1000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eotvos Lorand University, Budapest, Hungary.,Division of Nutrigenomics, Genomic Testing Center Geneus Health, LLC, San Antonio, TX, USA.,Department of Psychiatry, University of Vermont, VT, USA.,Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH., USA.,The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | - David Baron
- Western University Health Sciences, Pomona, CA, USA
| | - Rehan Jalali
- The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | | | | | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy I Memorial VA Hospital, San Antonio, TX. and Long School of Medicine, University of Texas Medical Center, San Antonio TX, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo. USA
| |
Collapse
|
11
|
Carli M, Kolachalam S, Aringhieri S, Rossi M, Giovannini L, Maggio R, Scarselli M. Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Curr Neuropharmacol 2018; 16:222-230. [PMID: 28521704 PMCID: PMC5883381 DOI: 10.2174/1570159x15666170518151127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Dopamine D2 and D3 receptors can form homo- and heterodimers and are important targets in Schizophrenia and Parkinson's. Recently, many efforts have been made to pharmacologically target these receptor complexes. This review focuses on various strategies to act specifically on dopamine receptor dimers, that are transiently formed. METHODS Various binding and functional assays were reviewed to study the properties of bivalent ligands, particularly for the dualsteric compound SB269,652. The dimerization of D2 and D3 receptors were analyzed by using single particle tracking microscopy. RESULTS The specific targeting of dopamine D2 and D3 dimers can be achieved with bifunctional ligands, composed of two pharmacophores binding the two orthosteric sites of the dimeric complex. If the target is a homodimer, then the ligand is homobivalent. Instead, if the target is a heterodimer, then the ligand is heterobivalent. However, there is some concern regarding pharmacokinetics and binding properties of such drugs. Recently, a new generation of bitopic compounds with dualsteric properties have been discovered that bind to the orthosteric and the allosteric sites in one monomeric receptor. Regarding dopamine D2 and D3 receptors, a new dualsteric molecule SB269,652 was shown to have selective negative allosteric properties across D2 and D3 homodimers, but it behaves as an orthosteric antagonist on receptor monomer. Targeting dimers is also complicated as they are transiently formed with varying monomer/dimer ratio. Furthermore, this ratio can be altered by administering an agonist or a bifunctional antagonist. CONCLUSION Last 15 years have witnessed an explosive amount of work aimed at generating bifunctional compounds as a novel strategy to target GPCR homo- and heterodimers, including dopamine receptors. Their clinical use is far from trivial, but, at least, they have been used to validate the existence of receptor dimers in-vitro and in-vivo. The dualsteric compound SB269, 652, with its peculiar pharmacological profile, may offer therapeutic advantages and a better tolerability in comparison with pure antagonists at D2 and D3 receptors and pave the way for a new generation of antipsychotic drugs.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. United States
| | - Luca Giovannini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Blum K, Lott L, Siwicki D, Fried L, Hauser M, Simpatico T, Baron D, Howeedy A, Badgaiyan RD. Genetic Addiction Risk Score (GARS ™) as a Predictor of Substance Use Disorder: Identifying Predisposition Not Diagnosis. CURRENT TRENDS IN MEDICAL DIAGNOSTIC METHODS 2018; 1. [PMID: 31276118 DOI: 10.29011/ctmdm-101.100001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kenneth Blum
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA.,Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Neurogenetic Research & Addiction Therapy, Florida House Rehabilitati on Centre, Deerfield Beach, FL, USA.,Department of Psychology, Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Division of Addiction Services, Dominion Diagnostics, North Kingstown, Rhode Island, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA.,Division of Neurogenetic & Addiction Therapy Research, The Florida House Experience, Deerfield Beach, FL, USA
| | - Lisa Lott
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA
| | - David Siwicki
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA.,Division of Addiction Services, Dominion Diagnostics, North Kingstown, Rhode Island, USA
| | - Lyle Fried
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA
| | - Mary Hauser
- Division of Addiction Services, Dominion Diagnostics, North Kingstown, Rhode Island, USA
| | - Thomas Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - David Baron
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA.,Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Ahmed Howeedy
- Division of Neurogenetic & Addiction Therapy Research, The Florida House Experience, Deerfield Beach, FL, USA
| | - Rajendra D Badgaiyan
- Department of Precision Behavioural Research, Geneus Health, San Antonio, TX, USA.,Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Blum K, Modestino EJ, Neary J, Gondré-Lewis MC, Siwicki D, Moran M, Hauser M, Braverman ER, Baron D, Steinberg B, Laughlin TM, Badgaiyan RD. Promoting Precision Addiction Management (PAM) to Combat the Global Opioid Crisis. ACTA ACUST UNITED AC 2018; 2:1-4. [PMID: 30370423 DOI: 10.26717/bjstr.2018.02.000738] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is universally agreed that dopamine is a major neurotransmitter in terms of reward dependence, however, there remains controversy regarding how to modulate its role clinically to treat and prevent relapse for both substance and non-substance-related addictive behaviors. It is also agreed by most that there is a need to provide early genetic identification possibly through a novel researched technology referred to Genetic Addiction Risk Score(GARS).™ The existing FDA-approved medications promote blocking dopamine, however, we argue that a more prudent paradigm shift should be biphasic-short-term blockade and long-term upregulation, enhancing functional connectivity of brain reward. It is critical to understand that the real phenotype is not any specific drug or non -drug addictive behavior, but instead is Reward Deficiency Syndrome (RDS). Thus the true phenotype of all addictive behaviors is indeed RDS. Finally, we are suggesting that one way to combat the current out of control Opioid /Alcohol crisis worldwide is to seriously reconsider treating RDS by simply supplying powerful narcotic agents (e.g. Buprenorphine). This type of treatment will only keep people addicted. A more reasonable solution involving genetic testing, urine drug screens using Comprehensive Analysis of Reported Drugs (CARD) and dopamine homeostasis we call " Precision Addiction Management" ™ seems parsonomiuos.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, Wright State University, USA.,Department of Psychiatry, University of Florida College of Medicine, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, USA.,Department of Precision Medicine, Geneus Health LLC, USA.,Department of Clinical Neurology, Path Foundation, USA.,Institute of Psychology, Eötvös Loránd University, USA.,National Human Genome Center at Howard University, USA.,Department of Psychiatry, University of Vermont, USA
| | | | - Jennifer Neary
- Department of Precision Medicine, Geneus Health LLC, USA
| | - Marjorie C Gondré-Lewis
- National Human Genome Center at Howard University, USA.,Department of Anatomy, Howard University College of Medicine, USA.,Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, USA
| | - David Siwicki
- Department of Precision Medicine, Geneus Health LLC, USA
| | - Mark Moran
- Department of Precision Medicine, Geneus Health LLC, USA
| | - Mary Hauser
- Division of Applied Clinical Research & Education, Dominion Diagnostics, USA
| | | | - David Baron
- Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, USA
| | | | | | | |
Collapse
|
14
|
Blum K, Modestino EJ, Gondre-Lewis M, Chapman EJ, Neary J, Siwicki D, Baron D, Hauser M, Smith DE, Roy AK, Thanos PK, Steinberg B, McLaughlin T, Fried L, Barh D, Dunston GA, Badgaiyan RD. The Benefits of Genetic Addiction Risk Score (GARS ™) Testing in Substance Use Disorder (SUD). INTERNATIONAL JOURNAL OF GENOMICS AND DATA MINING 2018; 2018. [PMID: 30198022 DOI: 10.29014/ijgd-115.000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Following 25 years of extensive research by many scientists worldwide, a panel of ten reward gene risk variants, called the Genetic Addiction Risk Score (GARS), has been developed. In unpublished work, when GARS was compared to the Addiction Severity Index (ASI), which has been used in many clinical settings, GARS significantly predicted the severity of both alcohol and drug dependency. In support of early testing for addiction and other RDS subtypes, parents caught up in the current demographic of 127 people, both young and old, dying daily from opiate/opioid overdose, need help. In the past, families would have never guessed that their loved ones would die or could be in real danger due to opiate addiction. Author, Bill Moyers, in Parade Magazine, reported that as he traveled around the United States, he found many children with ADHD and other spectrum disorders like Autism, and noted that many of these children had related conditions like substance abuse. He called for better ways to identify these children and treat them with approaches other than addictive pharmaceuticals. To our knowledge, GARS is the only panel of genes with established polymorphisms reflecting the Brain Reward Cascade (BRC), which has been correlated with the ASI-MV alcohol and drug risk severity score. While other studies are required to confirm and extend the GARS test to include other genes and polymorphisms that associate with an hypodopaminergic trait, these results provide clinicians with a non-invasive genetic test. Genomic testing, such as GARS, can improve clinical interactions and decision-making. Knowledge of precise polymorphic associations can help in the attenuation of guilt and denial, corroboration of family gene-o-grams; assistance in risk-severity-based decisions about appropriate therapies, including pain medications and risk for addiction; choice of the appropriate level of care placement (i.e., inpatient, outpatient, intensive outpatient, residential); determination of the length of stay in treatment; determination of genetic severity-based relapse and recovery liability and vulnerability; determination of pharmacogenetic medical monitoring for better clinical outcomes (e.g., the A1 allele of the DRD2 gene reduces the binding to opioid delta receptors in the brain, thus, reducing Naltrexone's clinical effectiveness); and supporting medical necessity for insurance scrutiny.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Neurogenetics, Igene, LLC, Austin, TX, USA.,Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.,Eötvös Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA.,Division of Precision Medicine, Geneus Health, LLC, USA.,Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India.,NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA
| | | | - Marjorie Gondre-Lewis
- NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA.,Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA.,Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Edwin J Chapman
- Department of Medicine, Howard University College of Medicine, Washington, DC, USA
| | | | - David Siwicki
- Division of Precision Medicine, Geneus Health, LLC, USA
| | - David Baron
- Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA
| | - Mary Hauser
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA
| | - David E Smith
- David E. Smith Associates, San Francisco, CA, & Institute of Health & Aging University of California, San Francisco, CA, USA
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | | | - Lyle Fried
- Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
| | - Georgia A Dunston
- NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Neurogenetics, Igene, LLC, Austin, TX, USA.,Division of Neuroscience Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.,Eötvös Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA.,Division of Precision Medicine, Geneus Health, LLC, USA.,Department of Psychiatry, Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India.,Department of Psychology, Curry College, Milton, MA, USA.,NeuroPsychoSocial Genomics Core, National Human Genome Center, Howard University, Washington, DC, USA.,Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA.,Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA.,Department of Medicine, Howard University College of Medicine, Washington, DC, USA.,David E. Smith Associates, San Francisco, CA, & Institute of Health & Aging University of California, San Francisco, CA, USA.,Addiction Recovery Resources, Inc. New Orleans, LA, USA.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.,Center for Psychiatric Medicine Lawrence, MA, USA
| |
Collapse
|
15
|
Blum K, Whitney D, Fried L, Febo M, Waite RL, Braverman ER, Dushaj K, Li M, Giordano J, Demetrovics Z, Badgaiyan RD. Hypothesizing that a Pro-Dopaminergic Regulator (KB220z ™ Liquid Variant) can Induce "Dopamine Homeostasis" and Provide Adjunctive Detoxification Benefits in Opiate/Opioid Dependence. CLINICAL MEDICAL REVIEWS AND CASE REPORTS 2016; 3:125. [PMID: 29034323 PMCID: PMC5638455 DOI: 10.23937/2378-3656/1410125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to explore the initiation of detoxification of addictive patients to opiates/opioids (along with some other anti-withdrawal agents), we developed a protocol to be utilized in treatment centers particularly with heavily dependent opiate/opioid subjects. Out of 17 subjects, only three received Buprenorphine/Naloxone (Bup/nx) along with KB220Z. In this pilot, we first used a dose of KB220Z of 2 oz twice daily before meals along with clonidine and benzodiazepines and other anti-nausea and sleep aids including Gabapentin. The dose of KB220Z was maintained for 6 days in five individuals. In a second scenario, we utilized a higher dose of 4 oz every 6 hours, over a 6-day period. The higher dose was employed in another 12 patients. It is noteworthy that only 3 people have relapsed utilizing these two protocols during the first two weeks of the study, allowing for the remaining 82% to be maintained on KB220Z. The patients have been maintained without any additional Bup/nx for a minimum of 120 days and in one subject, 214 days. We are in the process of testing this hypothesis in multiple treatment centers across the United Sates utilizing data from the Clinical opiate Withdrawal Scale (COWS) pre and post KB220Z. We are in the process of testing this hypothesis in multiple treatment centers across the United Sates. While this does not constitute an acceptable controlled experiment, it does provide some preliminary evidence that agrees with an earlier study. Moreover, because of the utilization of standard detoxifying agents in this detoxification protocol, we cannot make any inference to KB220Z's effects. However, out of 17 subjects, only three required Bup/nx suggesting an interesting finding. If further confirmed in larger studies, the utilization for opiate/opioid detoxification may provide a novel way to eliminate the need for addictive opioids during withdrawal and detoxification. This paradigm shift may translate to a reduction in utilizing powerful and addictive opioids like buprenorphine and methadone (especially in these patients at high genetic risk for addiction) as not only detoxifying agents, but also maintenance drugs. While extensive research is required, this pilot paves the way for future investigations that could assist in the reduction of addictive opiate/opioid use and mortalities amongst both the young and old in America.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, USA
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, USA
- Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, USA
- Division of Clinical Neurology, Path Foundation New York, USA
- Division of Personalized Medicine, IGENE, LLC, USA
- Division of Molecular Neurobiology, LaVitaRDS, USA
- National Institute for Holistic Studies in Addiction, USA
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, USA
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Hungary
| | - Debra Whitney
- Division of Clinical Addiction Medicine, Pure Recovery, USA
| | - Lye Fried
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, USA
| | - Marcelo Febo
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, USA
| | - Roger L Waite
- National Institute for Holistic Studies in Addiction, USA
| | | | | | - Mona Li
- Division of Personalized Medicine, IGENE, LLC, USA
| | - John Giordano
- National Institute for Holistic Studies in Addiction, USA
| | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Hungary
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, USA
| |
Collapse
|
16
|
Blum K, Thanos PK, Oscar-Berman M, Febo M, Baron D, Badgaiyan RD, Gardner E, Demetrovics Z, Fahlke C, Haberstick BC, Dushaj K, Gold MS. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction. ACTA ACUST UNITED AC 2015; 1:95-104. [PMID: 27398406 PMCID: PMC4936401 DOI: 10.17756/jrds.2015-016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes “surfeit” compared to” deficit” in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: “liking”, “learning”, and “wanting”. They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the “surfeit theory”. Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The “dopamine hypotheses” originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine deficiency. Vulnerability to addiction and relapse may be the result of the cumulative effects of dopaminergic and other neurotransmitter genetic variants and elevated stress levels. We therefore propose that dopamine homeostasis may be a preferred goal to combat relapse.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA; Division of Nutrigenomics, La Vita RDS, Salt Lake City, UT, USA
| | - Peter K Thanos
- Research Institute on Addictions, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - David Baron
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Eliot Gardner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Zsolt Demetrovics
- Eotvos Lorand University, Institute of Psychology, Department of Clinical Psychology and Addiction, Izabella utca 46., H-1064, Budapest, Hungary
| | - Claudia Fahlke
- Department of Psychology, University of Gothenburg, Sweden
| | - Brett C Haberstick
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Kristina Dushaj
- Department of Neurological Research, Path Foundation NY, USA
| | - Mark S Gold
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA; Department of Psychiatry, Washington University School of Medicine. St. Louis, MO, USA
| |
Collapse
|