1
|
Welk A, Patjek S, Gärtner M, Baguhl R, Schwahn C, Below H. Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiol 2021; 21:302. [PMID: 34732139 PMCID: PMC8564979 DOI: 10.1186/s12866-021-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background Antimicrobial agents are considered valuable adjuncts to mechanical methods of plaque control. However, their long-term use can be limited because of side effects. Therefore, using physiological substances is promising due to no risk of development, for example, of microbial resistances, allergies or DNA damaging. The lactoperoxidase-thiocyanate-hydrogen peroxide system (LPO-system) is a highly effective antimicrobial system. This study aimed to evaluate in a randomized study with a four-replicate cross-over design the effectiveness of two oral hygiene lozenges containing LPO-system in oral hygiene. Results After using the mouth rinse as positive control (A) and allocated test lozenges (B) (0.083% H2O2) & (C) (0.04% H2O2) for 4 days instead of the normal oral hygiene procedures (tooth brushing etc.), Listerine rinse (A) was statistically significantly more effective than the LPO-system-lozenge with 0.083% H2O2, the LPO-system-lozenge with 0.04% H2O2, and the placebo lozenge (D) in inhibiting plaque. Lozenges B and C were statistically significantly more effective than the placebo lozenge, but no statistically significant differences could be observed between them. The LPO-system-lozenge (B) reduced statistically significantly more S. mutans than the LPO-system-lozenge with (C) and the placebo lozenge (D). The LPO-system-lozenge (C) reduced statistically significantly more Lactobacilli than Listerine (A), the LPO-system-lozenge (B) and the placebo lozenge (D). There were no statistically significant differences in the total CFUs between Listerine rinse, the LPO-system-lozenge with 0.083% H2O2 (B), the LPO-system-lozenge with 0.04% H2O2 (C), and the placebo lozenge (D). On day 5 there were no differences of the OSCN−-values between all A, B, C, and D. However, the SCN−-values increased over the days in both LPO-system-lozenges (B/C). The statistically significant differences between B/C and A/D on day 5 were as followed: A to B p = 0.0268; A to C p = 0.0035; B to D p = 0.0051; C to D p = 0.0007. Only in the group of Listerine (A) increased the NO3−/NO2−-quotient over the test time, which indicates a reduction of nitrate-reducing bacteria. On Day 5 the statistically significant difference between A and B was p = 0.0123. Conclusions The results indicate that lozenges containing a complete LPO-system, inhibiting plaque regrowth and reducing cariogenic bacteria, may be used in the daily oral hygiene.
Collapse
Affiliation(s)
- A Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany.
| | - S Patjek
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - M Gärtner
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - R Baguhl
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| | - Ch Schwahn
- Dental School, Department of Prosthodontics, University of Greifswald, Greifswald, Germany
| | - H Below
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Magacz M, Kędziora K, Sapa J, Krzyściak W. The Significance of Lactoperoxidase System in Oral Health: Application and Efficacy in Oral Hygiene Products. Int J Mol Sci 2019; 20:ijms20061443. [PMID: 30901933 PMCID: PMC6472183 DOI: 10.3390/ijms20061443] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Lactoperoxidase (LPO) present in saliva are an important element of the nonspecific immune response involved in maintaining oral health. The main role of this enzyme is to oxidize salivary thiocyanate ions (SCN-) in the presence of hydrogen peroxide (H₂O₂) to products that exhibit antimicrobial activity. LPO derived from bovine milk has found an application in food, cosmetics, and medical industries due to its structural and functional similarity to the human enzyme. Oral hygiene products enriched with the LPO system constitute an alternative to the classic fluoride caries prophylaxis. This review describes the physiological role of human salivary lactoperoxidase and compares the results of clinical trials and in vitro studies of LPO alone and complex dentifrices enriched with bovine LPO. The role of reactivators and inhibitors of LPO is discussed together with the possibility of using nanoparticles to increase the stabilization and activity of this enzyme.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Kędziora
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
3
|
B S GK, Mohan Reddy P, Kottekad S. Comparative Site-Specific N-Glycosylation Analysis of Lactoperoxidase from Buffalo and Goat Milk Using RP-UHPLC-MS/MS Reveals a Distinct Glycan Pattern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11492-11499. [PMID: 30296068 DOI: 10.1021/acs.jafc.8b03243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The N-glycan pattern of lactoperoxidase (LPO) from buffalo and goat milk was analyzed with the corresponding site of attachment. The enzyme was purified from whey on cation exchange chromatography, proteolyzed using chymotrypsin, and the resulting (glyco)peptides were directly analyzed on reverse phase ultrahigh performance liquid chromatography coupled to ESI-Q-TOF MS in tandem mode. N-Glycans such as high mannose, complex, and hybrid types were identified in buffalo and goat LPO. Among sialylated complex and hybrid types, the terminal Neu5Ac linked to either LacNAc/LacdiNAc found exclusively in buffalo, whereas Neu5Gc linked to LacdiNAc was predominant in goat LPO. N-Glycans at Asn6 and Asn349 in buffalo LPO were completely core fucosylated, while these sites in goat LPO showed differential fucosylation. Differential occupancy was observed at Asn112 with or without nonfucosylated complex and hybrid types, whereas mainly high mannose glycans were found in Asn222 in both of the LPOs. The presence of glycan isomers in buffalo and goat LPO was also observed. Despite the presence of distinct complex and hybrid glycans, the common glycosylation features in buffalo and goat LPO were identified and are comparable with those of bovine LPO. This finding could be useful in exploring the beneficial role of these glycans as functional ingredients for food products.
Collapse
Affiliation(s)
- Gnanesh Kumar B S
- Department of Biochemistry , CSIR-Central Food Technological Research Institute (CFTRI) , Mysuru , Karnataka 570020 , India
| | - Prasad Mohan Reddy
- St. Joseph's College (Autonomous), Shanthinagar , Bengaluru , Karnataka 560027 , India
| | - Sanjay Kottekad
- Department of Biochemistry , CSIR-Central Food Technological Research Institute (CFTRI) , Mysuru , Karnataka 570020 , India
| |
Collapse
|
4
|
Abstract
: An evidence-based practice change at a radiation oncology center in a large academic medical center was designed to reduce the severity of oral mucositis in adults receiving radiation treatment for head and neck cancer. In the intervention described, patients were given newly created oral care kits and educational materials to improve their oral hygiene. Evaluations were conducted at three points during the project (before radiation treatment, during week 4 to 5 of treatment, and one month after treatment). At week 4 to 5-when the severity of oral mucositis is expected to peak-patients reported improved oral hygiene practices and reduced oral mucositis severity. The authors conclude that the use of these oral care kits and educational materials lessened the effects of oral mucositis during and after radiation treatment.
Collapse
|
5
|
Pinheiro SL, Azenha GR, DE Milito F, Democh YM. Antimicrobial Capacity of Casein Phosphopeptide/Amorphous Calcium Phosphate and Enzymes in Glass Ionomer Cement in Dentin Carious Lesions. Acta Stomatol Croat 2016; 49:104-11. [PMID: 27688392 DOI: 10.15644/asc49/2/3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To evaluate the ability of casein phosphopeptide/amorphous calcium phosphate (CPP/ACP) and lysozyme, lactoferrin, and lactoperoxidase (LLL) added to glass ionomer cement (GIC) to inhibit the growth of S. mutans in a caries model. MATERIAL AND METHODS Eighty permanent third molars were selected. The dentin of these teeth was exposed and flattened. Except for the coronal dentin, the specimens were waterproofed, autoclaved, and submitted to cariogenic challenge with standard strain of S. mutans. The carious lesions were sealed as follows: group 1 (n=20): GIC without additives; group 2 (n=20): GIC + CPP/ACP; group 3 (n=20): GIC + LLL; group 4 (n=20): GIC + CPP/ACP + LLL. S. mutans counts were performed before the caries were sealed (n=5), after 24 hours (n=5), at 1 month (n=5), and at 6 months (n=5). The results were analyzed using descriptive statistical analysis and the Kruskal-Wallis test (Student-Newman-Keuls test). RESULTS GIC + LLL caused a significant reduction of S. mutans 1 month after sealing (p<0.01); however, there was a significant growth of S. mutans 6 months after sealing. GIC, GIC + CPP/ACP, and GIC + CPP/ACP + LLL showed similar behavior with significant reduction of S. mutans after 24 hours (p<0.05) and increase after 1 and 6 months. CONCLUSION The addition of LLL to GIC increases the antimicrobial action of GIC on S. mutans. This leads to control of bacterial biofilm for 1 month, thus stopping the progression of carious lesions.
Collapse
Affiliation(s)
- Sérgio Luiz Pinheiro
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Giuliana Rodrigues Azenha
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Flávia DE Milito
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Yasmin Marialva Democh
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| |
Collapse
|
6
|
|
7
|
Gudipaneni RK, Kumar R V, G J, Peddengatagari S, Duddu Y. Short term comparative evaluation of antimicrobial efficacy of tooth paste containing lactoferrin, lysozyme, lactoperoxidase in children with severe early childhood caries: a clinical study. J Clin Diagn Res 2014; 8:ZC18-20. [PMID: 24959510 DOI: 10.7860/jcdr/2014/8161.4232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/12/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The present study is conducted to compare the anti-microbial efficacy of tooth paste containing lactoferrin, lysozyme, lactoperoxidase (BioXtra ®), a 500ppm fluoride tooth paste, and a non fluoridated tooth paste in children with Severe Early Childhood Caries (S-ECC). MATERIALS AND METHODS Study group included 30 children with S-ECC aged 3-5 years. Subjects were randomly selected & divided into three groups of ten each. Group I: Non-fluoride tooth paste, Group II: 500 ppm fluoride tooth paste, Group III: tooth paste containing lactoferrin, lysozyme & lactoperoxidase. Estimation of salivary S. mutans and L. acidophilus levels was accomplished by collecting salivary samples and inoculated on Mitis Salivarius Bacitracin agar (MSB) and Rogosa SL media. Colony Forming Units (CFUs) were counted and the results were tabulated and subjected to statistical analysis. RESULTS Brushing with tooth paste containing lysozyme, lactoferrin and lactoperoxidase after a week showed highly significant reduction in the CFU counts of both salivary S. mutans and L. acidophilus (p<0.001), whereas 500ppm fluoride tooth paste showed a highly significant reduction in the S. mutans levels (p<0.001), but a significant reduction in L. acidophilus count (p<0.01). Non-fluoride tooth paste showed a highly significant reduction in S. mutans (p<0.001) only, but reduction in the L. acidophilus levels was insignificant (p<0.05). CONCLUSION The present study revealed that tooth paste containing lactoferrin, lysozyme, and lactoperoxidase was highly significant in reducing the salivary levels of mutans Streptococci and L. acidophilus in children with S-ECC.
Collapse
Affiliation(s)
- Ravi Kumar Gudipaneni
- Assistant Professor, Department of Pedodontics and Preventive Dentistry, Government Dental College and Hospital , Kadapa, Andhra Pradesh, India
| | - Vijay Kumar R
- Senior Lecturer, Department of Periodontics, Government Dental College and Hospital , Kadapa, Andhra Pradesh, India
| | - Jesudass G
- Associate Professor, Department of Pedodontics and Preventive Dentistry, Government Dental College and Hospital , Kadapa, Andhra Pradesh, India
| | - Suresh Peddengatagari
- Associate Professor, Department of Periodontics, Government Dental College and Hospital , Kadapa, Andhra Pradesh, India
| | - Yesuratnam Duddu
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Government Dental College and Hospital , Kadapa, Andhra Pradesh, India
| |
Collapse
|
8
|
Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 2012; 84:1381-7. [PMID: 22968041 DOI: 10.1016/j.bcp.2012.07.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/15/2022]
Abstract
Thiocyanate (SCN) functions in host defense as part of the secreted lactoperoxidase (LPO) microbicidal pathway. SCN is the preferred substrate for LPO-driven catalytic reduction of hydrogen peroxide (H(2)O(2)) forming hypothiocyanous acid (HOSCN). HOSCN is selectively generated by many peroxidase enzymes that can utilize SCN including: eosinophil peroxidase (EPO), gastric peroxidase (GPO), myeloperoxidase (MPO), salivary peroxidase (SPO), and thyroid peroxidase (TPO). These enzymes generate HOSCN through a two-electron halogenation reaction. HOSCN is a potent microbicidal agent that kills or nullifies invading pathogens but is better tolerated by host tissue. Some controversy exists as to whether physiologic levels of HOSCN are non-toxic to host tissue, but the disagreement appears to be based on results of enzymatic generation (yielding moderate steady-state exposure) versus direct high level acute exposure in mammalian cell lines. This apparent duality is also true of other endogenous oxidants such as hydrogen peroxide and relates to the difference between physiologically relevant oxidant production versus supra-physiologic bolus dosing approaches. SCN has antioxidant properties that include the ability to protect cells against oxidizing agents such as hypochlorous acid (HOCl) and repair protein chloramines. SCN is an important endogenous molecule that has the potential to interact in complex and elegant ways with its host environment and foreign organisms. SCN's diverse properties as both host defense and antioxidant agent make it a potentially useful therapeutic.
Collapse
Affiliation(s)
- Joshua D Chandler
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States
| | | |
Collapse
|
9
|
Güneri P, Alpöz E, Epstein JB, Çankaya H, Ateş M. In vitro antimicrobial effects of commercially available mouth-wetting agents. SPECIAL CARE IN DENTISTRY 2011; 31:123-8. [PMID: 21729120 DOI: 10.1111/j.1754-4505.2011.00194.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Products have been developed to provide palliation for persons with dry mouth. In addition to mouth-wetting agents, some products incorporate antimicrobial constituents with the goal of improving oral microbial defenses. The aim of this in vitro study was to investigate the potential antimicrobial and antifungal effects of two commercially available saliva substitutes on Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans by using the agar-well diffusion method. Antimicrobial activity as measured by the size of the inhibition zone growth for S. mutans and L. acidophilus was observed only with Biotene Dry Mouth Oral Rinse® and BioXtra® gel. The zone of inhibition of Biotene Dry Mouth Oral Rinse was larger than that of BioXtra gel (p= 0.00, p < 0.01). No anticandidal effect was seen with any of the test products. The pH of the preparations, the variations between the amount of active ingredients within the products, and the potential antimicrobial effects of inactive ingredients should be investigated to determine the factors that impacted microbial inhibition.
Collapse
Affiliation(s)
- Pelin Güneri
- Department of Oral Diagnosis and Radiology, School of Dentistry, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
10
|
Welk A, Rudolph P, Kreth J, Schwahn C, Kramer A, Below H. Microbicidal efficacy of thiocyanate hydrogen peroxide after adding lactoperoxidase under saliva loading in the quantitative suspension test. Arch Oral Biol 2011; 56:1576-82. [DOI: 10.1016/j.archoralbio.2011.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|