1
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Chen X, Kang J, Sun Q, Liu C, Wang H, Wang C, Gopinath SCB. Current-Volt Biosensing "Cystatin C" on Carbon Nanowired Interdigitated Electrode Surface: A Clinical Marker Analysis for Bulged Aorta. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8160502. [PMID: 35655788 PMCID: PMC9152415 DOI: 10.1155/2022/8160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
A carbon nanowire-modified surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal aortic aneurysm biomarker "papain," also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. This papain-modified electrode surface was utilized to detect the different concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). The interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to 3.2 ng/mL, and the current differences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. The averaging of three independent experiments (n = 3) was made with 3δ estimation, and the determination coefficient was y = 1.8477 × 0.7303 and R 2 = 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized papain, indicating the specific detection of Cystatin C.
Collapse
Affiliation(s)
- Xi Chen
- Department of Vascular Surgery, Wuhan No.1 Hospital, WuHan, HuBei 430022, China
| | - Jie Kang
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province 252000, China
| | - Qiu Sun
- Department of Intervention, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated of Nanjing University Medical School, Nanjing City, Jiangsu Province 730050, China
| | - Hongling Wang
- Department of Cardiothoracic Surgery, Hospital of Lianqin Security Force 940th, Lanzhou, Gansu 730000, China
| | - Chen Wang
- Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, No. 418 Guazhou Road, Qilihe District, Lanzhou City, Gansu Province 730050, China
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling 08100, Kedah, Malaysia
| |
Collapse
|
3
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
4
|
Calais T, Sanandiya ND, Jain S, Kanhere EV, Kumar S, Yeow RCH, Valdivia Y Alvarado P. Freeform Liquid 3D Printing of Soft Functional Components for Soft Robotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2301-2315. [PMID: 34962370 DOI: 10.1021/acsami.1c20209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Freeform liquid three-dimensional printing (FL-3DP) is a promising new additive manufacturing process that uses a yield stress gel as a temporary support, enabling the processing of a broader class of inks into complex geometries, including those with low viscosities or long solidification kinetics that were previously not processable. However, the full exploitation of these advantages for the fabrication of complex multilateral structures has been hindered by difficulties in controlling the interfaces between inks and supports. In this work, an in-depth study of the rheological properties and interfacial stabilities between a nanoclay-modified support and silicone-based inks enabled a better understanding of the impact printing parameters have on the extruded filament morphology, and thus on printing resolutions. With these improvements, the fabrication of functional multimaterial pneumatic components applied to soft robotics could be demonstrated, exhibiting superior capabilities compared to casting or traditional extrusion-based additive manufacturing in terms of geometric freedom (overhanging and multimaterial structures), tunability of the component's functionality, and robustness between different phases. Overall, the full exploitation of FL-3DP advantages enables a broader design space for features and functionalities in soft robotic components that require complex and robust combinations of materials.
Collapse
Affiliation(s)
- Théo Calais
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Naresh D Sanandiya
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Snehal Jain
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Elgar V Kanhere
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Siddharth Kumar
- Engineering and Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Raye Chen-Hua Yeow
- Depatment of Biomedical Engineering, National University of Singapore, 117583 Singapore
| | - Pablo Valdivia Y Alvarado
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- Engineering and Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| |
Collapse
|
5
|
Ma R, Gopinath SCB, Lakshmipriya T, Chen Y. Carbon Material Hybrid Construction on an Aptasensor for Monitoring Surgical Tumors. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:9740784. [PMID: 35592850 PMCID: PMC9113893 DOI: 10.1155/2022/9740784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 05/08/2023]
Abstract
Carcinoembryonic antigen (CEA) is a glycoprotein, one of the common tumor biomarkers, found at low levels in body fluids. Generally, overexpression of CEA is found in various cancers, including ovarian, breast, lung, colorectal, gastric, and pancreatic cancers. Since CEA is an important tumor biomarker, the quantification of CEA is helpful for diagnosing cancer, monitoring tumor progression, and the follow-up treatment. This research develops a highly sensitive sandwich aptasensor for CEA identification on an interdigitated electrode sensor. Carbon-based material was used to attach a higher anti-CEA capture aptamer onto the sensor surface through a chemical linker, and then, CEA was quantified by the aptamer. Furthermore, CEA-spiked serum was tested by using the immobilized aptamer, which was found to not affect the target validation. The limit of detection for CEA in PBS and serum is calculated from a linear regression graph to be 0.5 ng/mL with R 2 values of 0.9593 and 0.9657, respectively, over a linear range from 0.5 to 500 ng/mL. This CEA quantification by the aptasensor can help diagnose various surgical tumors and monitor their progression.
Collapse
Affiliation(s)
- Renyuan Ma
- Department of General Surgery, Yulin No. 2 Hospital, Yulin 719000, China
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Bedong, 08100 Kedah, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers (Basel) 2021; 14:polym14010065. [PMID: 35012090 PMCID: PMC8747620 DOI: 10.3390/polym14010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Critical bone defects are a major clinical challenge in reconstructive bone surgery. Polycaprolactone (PCL) mixed with bioceramics, such as hydroxyapatite (HA) and tricalcium phosphate (TCP), create composite scaffolds with improved biological recognition and bioactivity. Electrical stimulation (ES) aims to compensate the compromised endogenous electrical signals and to stimulate cell proliferation and differentiation. We investigated the effects of composite scaffolds (PCL with HA; and PCL with β-TCP) and the use of ES on critical bone defects in Wistar rats using eight experimental groups: untreated, ES, PCL, PCL/ES, HA, HA/ES, TCP, and TCP/ES. The investigation was based on histomorphometry, immunohistochemistry, and gene expression analysis. The vascular area was greater in the HA/ES group on days 30 and 60. Tissue mineralization was greater in the HA, HA/ES, and TCP groups at day 30, and TCP/ES at day 60. Bmp-2 gene expression was higher in the HA, TCP, and TCP/ES groups at day 30, and in the TCP/ES and PCL/ES groups at day 60. Runx-2, Osterix, and Osteopontin gene expression were also higher in the TCP/ES group at day 60. These results suggest that scaffolds printed with PCL and TCP, when paired with electrical therapy application, improve bone regeneration.
Collapse
|
7
|
Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021; 13:3015. [PMID: 34503054 PMCID: PMC8433665 DOI: 10.3390/polym13173015] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Natural and synthetic polymers have been explored for many years in the field of tissue engineering and regeneration. Researchers have developed many new strategies to design successful advanced polymeric biomaterials. In this review, we summarized the recent notable advancements in the preparation of smart polymeric biomaterials with self-healing and shape memory properties. We also discussed novel approaches used to develop different forms of polymeric biomaterials such as films, hydrogels and 3D printable biomaterials. In each part, the applications of the biomaterials in soft and hard tissue engineering with their in vitro and in vivo effects are underlined. The future direction of the polymeric biomaterials that could pave a path towards successful clinical implications is also underlined in this review.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| |
Collapse
|
8
|
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-Acid-Based Organic-Inorganic Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4982. [PMID: 34501070 PMCID: PMC8434239 DOI: 10.3390/ma14174982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Applications of natural hyaluronic acid (HYH) for the fabrication of organic-inorganic composites for biomedical applications are described. Such composites combine unique functional properties of HYH with functional properties of hydroxyapatite, various bioceramics, bioglass, biocements, metal nanoparticles, and quantum dots. Functional properties of advanced composite gels, scaffold materials, cements, particles, films, and coatings are described. Benefiting from the synergy of properties of HYH and inorganic components, advanced composites provide a platform for the development of new drug delivery materials. Many advanced properties of composites are attributed to the ability of HYH to promote biomineralization. Properties of HYH are a key factor for the development of colloidal and electrochemical methods for the fabrication of films and protective coatings for surface modification of biomedical implants and the development of advanced biosensors. Overcoming limitations of traditional materials, HYH is used as a biocompatible capping, dispersing, and structure-directing agent for the synthesis of functional inorganic materials and composites. Gel-forming properties of HYH enable a facile and straightforward approach to the fabrication of antimicrobial materials in different forms. Of particular interest are applications of HYH for the fabrication of biosensors. This review summarizes manufacturing strategies and mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada; (R.S.); (B.K.)
| |
Collapse
|
9
|
Juan PK, Fan FY, Lin WC, Liao PB, Huang CF, Shen YK, Ruslin M, Lee CH. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds. Polymers (Basel) 2021; 13:2718. [PMID: 34451257 PMCID: PMC8401466 DOI: 10.3390/polym13162718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
This study applied poly-ε-caprolactone (PCL), a biomedical ceramic powder as an additive (nano-hydroxyapatite (nHA) or β-tricalcium diphosphate (β-TCP)), and sodium chloride (NaCl) and ammonium bicarbonate ((NH4)HCO3) as porogens; these stuffs were used as scaffold materials. An improved solvent-casting/particulate-leaching method was utilized to fabricate 3D porous scaffolds. In this study we examined the physical properties (elastic modulus, porosity, and contact angle) and degradation properties (weight loss and pH value) of the 3D porous scaffolds. Both nHA and β-TCP improved the mechanical properties (elastic modulus) of the 3D porous scaffolds. The elastic modulus (0.15~1.865 GPa) of the various composite scaffolds matched that of human cancellous bone (0.1~4.5 GPa). Osteoblast-like (MG63) cells were cultured, a microculture tetrazolium test (MTT) was conducted and alkaline phosphatase (ALP) activity of the 3D porous scaffolds was determined. Experimental results indicated that both nHA and β-TCP powder improved the hydrophilic properties of the scaffolds. The degradation rate of the scaffolds was accelerated by adding nHA or β-TCP. The MTT and ALP activity tests indicated that the scaffolds with a high ratio of nHA or β-TCP had excellent properties of in vitro biocompatibility (cell attachment and proliferation).
Collapse
Affiliation(s)
- Po-Kai Juan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan; (P.-K.J.); (P.-B.L.)
| | - Fang-Yu Fan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Wei-Chun Lin
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Pei-Bang Liao
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan; (P.-K.J.); (P.-B.L.)
| | - Chiung-Fang Huang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-Y.F.); (W.-C.L.); (C.-F.H.)
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia;
| | - Chen-Han Lee
- Taiwan Society of Blood Biomaterials, New Taipei City 221, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers (Basel) 2021; 13:polym13152510. [PMID: 34372114 PMCID: PMC8347286 DOI: 10.3390/polym13152510] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Impaired skin wound healing due to severe injury often leads to dysfunctional scar tissue formation as a result of excessive and persistent myofibroblast activation, characterised by the increased expression of α-smooth muscle actin (αSMA) and extracellular matrix (ECM) proteins. Yet, despite extensive research on impaired wound healing and the advancement in tissue-engineered skin substitutes, scar formation remains a significant clinical challenge. This study aimed to first investigate the effect of methacrylate gelatin (GelMA) biomaterial stiffness on human dermal fibroblast behaviour in order to then design a range of 3D-printed GelMA scaffolds with tuneable structural and mechanical properties and understand whether the introduction of pores and porosity would support fibroblast activity, while inhibiting myofibroblast-related gene and protein expression. Results demonstrated that increasing GelMA stiffness promotes myofibroblast activation through increased fibrosis-related gene and protein expression. However, the introduction of a porous architecture by 3D printing facilitated healthy fibroblast activity, while inhibiting myofibroblast activation. A significant reduction was observed in the gene and protein production of αSMA and the expression of ECM-related proteins, including fibronectin I and collagen III, across the range of porous 3D-printed GelMA scaffolds. These results show that the 3D-printed GelMA scaffolds have the potential to improve dermal skin healing, whilst inhibiting fibrosis and scar formation, therefore potentially offering a new treatment for skin repair.
Collapse
|
11
|
Salamone M, Rigogliuso S, Nicosia A, Campora S, Bruno CM, Ghersi G. 3D Collagen Hydrogel Promotes In Vitro Langerhans Islets Vascularization through ad-MVFs Angiogenic Activity. Biomedicines 2021; 9:biomedicines9070739. [PMID: 34199087 PMCID: PMC8301445 DOI: 10.3390/biomedicines9070739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 μm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF–islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation.
Collapse
Affiliation(s)
- Monica Salamone
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Salvatrice Rigogliuso
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
| | - Carmelo Marco Bruno
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Giulio Ghersi
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
- Correspondence:
| |
Collapse
|
12
|
Vojtová L, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Knoz M, Lipový B, Faldyna M, Göpfert E, Holoubek J, Pavlovský Z, Vícenová M, Blahnová VH, Hearnden V, Filová E. Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB ® Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines 2021; 9:590. [PMID: 34067330 PMCID: PMC8224647 DOI: 10.3390/biomedicines9060590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 °C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
Collapse
Affiliation(s)
- Lucy Vojtová
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Veronika Pavliňáková
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Johana Muchová
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Katarína Kacvinská
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Jana Brtníková
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Martin Knoz
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
- Clinic of Plastic and Esthetic Surgery, St Anne’s University Hospital, 602 00 Brno, Czech Republic
| | - Břetislav Lipový
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
| | - Martin Faldyna
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Eduard Göpfert
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Jakub Holoubek
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
| | - Zdeněk Pavlovský
- Faculty of Medicine, Institute of Pathology, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
| | - Monika Vícenová
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Science, 142 20 Prague, Czech Republic; (V.H.B.); (E.F.)
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK;
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Science, 142 20 Prague, Czech Republic; (V.H.B.); (E.F.)
| |
Collapse
|
13
|
Krieghoff J, Rost J, Kohn-Polster C, Müller BM, Koenig A, Flath T, Schulz-Siegmund M, Schulze FP, Hacker MC. Extrusion-Printing of Multi-Channeled Two-Component Hydrogel Constructs from Gelatinous Peptides and Anhydride-Containing Oligomers. Biomedicines 2021; 9:biomedicines9040370. [PMID: 33916295 PMCID: PMC8065526 DOI: 10.3390/biomedicines9040370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
The performance of artificial nerve guidance conduits (NGC) in peripheral nerve regeneration can be improved by providing structures with multiple small channels instead of a single wide lumen. 3D-printing is a strategy to access such multi-channeled structures in a defined and reproducible way. This study explores extrusion-based 3D-printing of two-component hydrogels from a single cartridge printhead into multi-channeled structures under aseptic conditions. The gels are based on a platform of synthetic, anhydride-containing oligomers for cross-linking of gelatinous peptides. Stable constructs with continuous small channels and a variety of footprints and sizes were successfully generated from formulations containing either an organic or inorganic gelation base. The adjustability of the system was investigated by varying the cross-linking oligomer and substituting the gelation bases controlling the cross-linking kinetics. Formulations with organic N-methyl-piperidin-3-ol and inorganic K2HPO4 yielded hydrogels with comparable properties after manual processing and extrusion-based 3D-printing. The slower reaction kinetics of formulations with K2HPO4 can be beneficial for extending the time frame for printing. The two-component hydrogels displayed both slow hydrolytic and activity-dependent enzymatic degradability. Together with satisfying in vitro cell proliferation data, these results indicate the suitability of our cross-linked hydrogels as multi-channeled NGC for enhanced peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jan Krieghoff
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Eilenburger Straße 15a, 04317 Leipzig, Germany; (J.K.); (M.S.-S.)
| | - Johannes Rost
- Department of Mechanical and Energy Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany; (T.F.); (F.-P.S.)
| | - Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Eilenburger Straße 15a, 04317 Leipzig, Germany; (J.K.); (M.S.-S.)
| | - Benno M. Müller
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Eilenburger Straße 15a, 04317 Leipzig, Germany; (J.K.); (M.S.-S.)
| | - Andreas Koenig
- Department of Prosthodontics and Materials Science, University of Leipzig, Liebigstraße 12, 04103 Leipzig, Germany;
| | - Tobias Flath
- Department of Mechanical and Energy Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany; (T.F.); (F.-P.S.)
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Eilenburger Straße 15a, 04317 Leipzig, Germany; (J.K.); (M.S.-S.)
| | - Fritz-Peter Schulze
- Department of Mechanical and Energy Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany; (T.F.); (F.-P.S.)
| | - Michael C. Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Eilenburger Straße 15a, 04317 Leipzig, Germany; (J.K.); (M.S.-S.)
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14220
| |
Collapse
|
14
|
Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng 2021; 5:010904. [PMID: 33644626 PMCID: PMC7889293 DOI: 10.1063/5.0032777] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
In tissue engineering, an unresolved challenge is how to build complex 3D scaffolds in order to recreate the structure and function of human tissues and organs. Additive manufacturing techniques, such as 3D bioprinting, have the potential to build biological material with unprecedented spatial control; however, printing soft biological materials in air often results in poor fidelity. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) is an embedded printing approach that solves this problem by extruding bioinks within a yield-stress support bath that holds the bioinks in place until cured. In this Perspective, we discuss the challenges of 3D printing soft and liquid-like bioinks and the emergence for FRESH and related embedded printing techniques as a solution. This includes the development of FRESH and embedded 3D printing within the bioprinting field and the rapid growth in adoption, as well as the advantages of FRESH printing for biofabrication and the new research results this has enabled. Specific focus is on the customizability of the FRESH printing technique where the chemical composition of the yield-stress support bath and aqueous phase crosslinker can all be tailored for printing a wide range of bioinks in complex 3D structures. Finally, we look ahead at the future of FRESH printing, discussing both the challenges and the opportunities that we see as the biofabrication field develops.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
15
|
Chen S, Tan WS, Bin Juhari MA, Shi Q, Cheng XS, Chan WL, Song J. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomed Eng Lett 2020; 10:453-479. [PMID: 33194241 PMCID: PMC7655899 DOI: 10.1007/s13534-020-00171-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
In the last decade, an emerging three-dimensional (3D) printing technique named freeform 3D printing has revolutionized the biomedical engineering field by allowing soft matters with or without cells to be printed and solidified with high precision regardless of their poor self-supportability. The key to this freeform 3D printing technology is the supporting matrices that hold the printed soft ink materials during omnidirectional writing and solidification. This approach not only overcomes structural design restrictions of conventional layer-by-layer printing but also helps to realize 3D printing of low-viscosity or slow-curing materials. This article focuses on the recent developments in freeform 3D printing of soft matters such as hydrogels, cells, and silicone elastomers, for biomedical engineering. Herein, we classify the reported freeform 3D printing systems into positive, negative, and functional based on the fabrication process, and discuss the rheological requirements of the supporting matrix in accordance with the rheological behavior of counterpart inks, aiming to guide development and evaluation of new freeform printing systems. We also provide a brief overview of various material systems used as supporting matrices for freeform 3D printing systems and explore the potential applications of freeform 3D printing systems in different areas of biomedical engineering.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Wen See Tan
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Muhammad Aidil Bin Juhari
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Qian Shi
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Xue Shirley Cheng
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Wai Lee Chan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Juha Song
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|