1
|
Meyer LO, Jérôme V, Freitag R. Custom FDM-based bioprinter with heated nozzle: optimizing slicer settings for precision printing using a print quality index. Biomed Mater 2025; 20:035030. [PMID: 40300619 DOI: 10.1088/1748-605x/add230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
Bioprinting of microtissues has become a standard technique in medical and biotechnological research, offering a more accurate replication of thein vivosetting than conventional 2D cell culture. However, widespread adoption is limited by the absence of a universally accepted printing benchmark-common in standard fused deposition modeling (FDM) printing, as well as the high cost and restricted customizability of commercial bioprinters. This study introduces a method to convert a standard FDM printer into a bioprinter. All cell-contacting components are biocompatible and autoclavable, while the printer body can be UV-sanitized. Using a heated FDM printhead, we used the thermal properties of alginate-gelatin bioinks to achieve high-resolution 3D printing. A key achievement was the developed print quality index (PQI) method, which correlates nozzle temperature with bioink flow behavior, streamlining optimization of slicer settings. Guided by PQI, we reproducibly bioprinted complex alginate-gelatin structures with high quality and dimensional/geometric accuracy. A case study using recombinant HuH7EGFPcell-laden hydrogels demonstrated long-term cell proliferation, confirming high viability. Given its efficiency, the PQI method has the potential to become the missing printing benchmark for slicer optimization in bioprinting. The presented approach significantly advances the accessibility of sophisticated bioprinting technology to interested research groups worldwide.
Collapse
Affiliation(s)
- Leif O Meyer
- Process Biotechnology, University of Bayreuth, Germany
| | | | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Germany
| |
Collapse
|
2
|
Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and Intellectual Property: Challenges, Opportunities, and the Road Ahead. Bioengineering (Basel) 2025; 12:76. [PMID: 39851350 PMCID: PMC11761581 DOI: 10.3390/bioengineering12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Bioprinting, an innovative combination of biotechnology and additive manufacturing, has emerged as a transformative technology in healthcare, enabling the fabrication of functional tissues, organs, and patient-specific implants. The implementation of the aforementioned, however, introduces unique intellectual property (IP) challenges that extend beyond conventional biotechnology. The study explores three critical areas of concern: IP protection for bioprinting hardware and bioinks, ownership and ethical management of digital files derived from biological data, and the implications of commercializing bioprinted tissues and organs. Employing a multidisciplinary approach, the paper analyzes existing IP frameworks, highlights their limitations when applied to bioprinting, and examines ethical dilemmas, such as ownership of bioprinted human tissues and the commodification of biological innovations. Findings suggest that current IP laws inadequately address the complexities of bioprinting, particularly in managing the intersection of proprietary technologies and ethical considerations. The study underscores the need for adaptive legal and ethical frameworks to balance innovation with equitable access and sustainability. Recommendations include the development of tailored IP policies for bioprinting and enhanced international collaboration to harmonize legal protections across jurisdictions. This work aims to provide a comprehensive foundation for stakeholders to navigate the rapidly evolving landscape of bioprinting IP.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, Bucharest Polytechnic University, 060042 Bucharest, Romania;
| | - Elli Alysandratou
- School of Humanities, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
3
|
Bardini R, Di Carlo S. Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review. Comput Struct Biotechnol J 2024; 23:601-616. [PMID: 38283852 PMCID: PMC10818159 DOI: 10.1016/j.csbj.2023.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field.
Collapse
Affiliation(s)
- Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| |
Collapse
|
4
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
5
|
Gomes Gama JF, Dias EA, Aguiar Coelho RMG, Chagas AM, Aguiar Coelho Nt J, Alves LA. Development and implementation of a significantly low-cost 3D bioprinter using recycled scrap material. Front Bioeng Biotechnol 2023; 11:1108396. [PMID: 37091338 PMCID: PMC10119389 DOI: 10.3389/fbioe.2023.1108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
The field of 3D bioengineering proposes to effectively contribute to the manufacture of artificial multicellular organ/tissues and the understanding of complex cellular mechanisms. In this regard, 3D cell cultures comprise a promising bioengineering possibility for the alternative treatment of organ function loss, potentially improving patient life expectancies. Patients with end-stage disease, for example, could benefit from treatment until organ transplantation or even undergo organ function restoration. Currently, 3D bioprinters can produce tissues such as trachea cartilage or artificial skin. Most low-cost 3D bioprinters are built from fused deposition modeling 3D printer frames modified for the deposition of biologically compatible material, ranging between $13.000,00 and $300.000,00. Furthermore, the cost of consumables should also be considered as they, can range from $3,85 and $100.000,00 per gram, making biomaterials expensive, hindering bioprinting access. In this context, our report describes the first prototype of a significantly low-cost 3D bioprinter built from recycled scrap metal and off-the-shelf electronics. We demonstrate the functionalized process and methodology proof of concept and aim to test it in different biological tissue scaffolds in the future, using affordable materials and open-source methodologies, thus democratizing the state of the art of this technology.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Evellyn Araujo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Maia Chagas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- TReND in Africa, Brighton, United Kingdom
- Biomedical Science Research and Training Center, Yobe State University, Damaturu, Nigeria
| | - José Aguiar Coelho Nt
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Industrial Property- INPI and Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Luiz Anastacio Alves,
| |
Collapse
|
6
|
MacAdam A, Chaudry E, McTiernan CD, Cortes D, Suuronen EJ, Alarcon EI. Development of in situ bioprinting: A mini review. Front Bioeng Biotechnol 2022; 10:940896. [PMID: 35935512 PMCID: PMC9355423 DOI: 10.3389/fbioe.2022.940896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting has rapidly progressed over the past decade. One branch of bioprinting known as in situ bioprinting has benefitted considerably from innovations in biofabrication. Unlike ex situ bioprinting, in situ bioprinting allows for biomaterials to be printed directly into or onto the target tissue/organ, eliminating the need to transfer pre-made three-dimensional constructs. In this mini-review, recent progress on in situ bioprinting, including bioink composition, in situ crosslinking strategies, and bioprinter functionality are examined. Future directions of in situ bioprinting are also discussed including the use of minimally invasive bioprinters to print tissues within the body.
Collapse
Affiliation(s)
- Aidan MacAdam
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emaan Chaudry
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christopher D. McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J. Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emilio I. Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Kadumudi FB, Dolatshahi-Pirouz A, Orive G, Desimone MF. The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics 2022; 14:464. [PMID: 35214197 PMCID: PMC8875365 DOI: 10.3390/pharmaceutics14020464] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Skin tissue engineering and regeneration aim at repairing defective skin injuries and progress in wound healing. Until now, even though several developments are made in this field, it is still challenging to face the complexity of the tissue with current methods of fabrication. In this review, short, state-of-the-art on developments made in skin tissue engineering using 3D bioprinting as a new tool are described. The current bioprinting methods and a summary of bioink formulations, parameters, and properties are discussed. Finally, a representative number of examples and advances made in the field together with limitations and future needs are provided.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Sofia Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - María Inés Álvarez-Echazú
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Pablo Luis Santo-Orihuela
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Centro de Investigaciones en Plagas e Insecticidas (CIPEIN), Instituto de Investigaciones Científicas y Técnicas para la Defensa CITEDEF/UNIDEF, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina (CONICET), Juan B. de La Salle 4397, Villa Martelli, Buenos Aires 1603, Argentina
| | - Paolo Nicolás Catalano
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499, San Martín 1650, Argentina
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Gorka Orive
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martin Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
8
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
9
|
Idumah CI, Ezika AC. Recent advancements in hybridized polymer nano-biocomposites for tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Anthony Chidi Ezika
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
10
|
Daoud GE, Pezzutti DL, Dolatowski CJ, Carrau RL, Pancake M, Herderick E, VanKoevering KK. Establishing a point-of-care additive manufacturing workflow for clinical use. JOURNAL OF MATERIALS RESEARCH 2021; 36:3761-3780. [PMID: 34248272 PMCID: PMC8259775 DOI: 10.1557/s43578-021-00270-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Additive manufacturing, or 3-Dimensional (3-D) Printing, is built with technology that utilizes layering techniques to build 3-D structures. Today, its use in medicine includes tissue and organ engineering, creation of prosthetics, the manufacturing of anatomical models for preoperative planning, education with high-fidelity simulations, and the production of surgical guides. Traditionally, these 3-D prints have been manufactured by commercial vendors. However, there are various limitations in the adaptability of these vendors to program-specific needs. Therefore, the implementation of a point-of-care in-house 3-D modeling and printing workflow that allows for customization of 3-D model production is desired. In this manuscript, we detail the process of additive manufacturing within the scope of medicine, focusing on the individual components to create a centralized in-house point-of-care manufacturing workflow. Finally, we highlight a myriad of clinical examples to demonstrate the impact that additive manufacturing brings to the field of medicine.
Collapse
Affiliation(s)
| | | | | | - Ricardo L. Carrau
- The Ohio State University College of Medicine, Columbus, OH USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210 USA
- Department of Otolaryngology, The Ohio State University, Columbus, OH USA
| | - Mary Pancake
- Department of Engineering, The Ohio State University, Columbus, OH USA
| | - Edward Herderick
- Department of Engineering, The Ohio State University, Columbus, OH USA
| | - Kyle K. VanKoevering
- The Ohio State University College of Medicine, Columbus, OH USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210 USA
- Department of Otolaryngology, The Ohio State University, Columbus, OH USA
| |
Collapse
|
11
|
Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini M. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:451-463. [PMID: 33820451 DOI: 10.1089/ten.teb.2021.0026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) bioprinting is a novel technique applied to manufacture semisolid or solid objects via deposition of successive thin layers. The widespread implementation of the 3D bioprinting technology encouraged scientists to evaluate its feasibility for applications in human regenerative medicine. 3D bioprinting gained much interest as a new strategy to prepare implantable 3D tissues or organs, tissue and organ evaluation models to test drugs, and cell/material interaction systems. The present work summarizes recent and relevant progress based on the use of hydrogels for the technology of 3D bioprinting and their emerging biomedical applications. An overview of different 3D printing techniques in addition to the nature and properties of bioinks used will be described with a focus on hydrogels as suitable bioinks for 3D printing. A comprehensive overview of triblock copolymers with emphasis on Pluronic F127 (PF127) as a bioink in 3D printing for regenerative medicine will be provided. Several biomedical applications of PF127 in tissue engineering, particularly in bone and cartilage regeneration and in vascular reconstruction, will be also discussed.
Collapse
Affiliation(s)
- Rehab N Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|