1
|
Huang Y, Rao S, Sun X, Liu J. Advances in molecular epidemiology of diabetic retinopathy: from genomics to gut microbiomics. Mol Biol Rep 2025; 52:304. [PMID: 40080283 DOI: 10.1007/s11033-025-10383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Diabetic retinopathy (DR) remains a prevalent complication of diabetes mellitus and a leading cause of blindness worldwide. The growing global diabetic population underscores the urgency to deepen our understanding of DR pathogenesis and develop effective prevention strategies. This review synthesizes recent advancements in molecular epidemiology, spanning genomics, epigenomics, transcriptomics, proteomics, metabolomics, and gut microbiomics, elucidating genetic underpinnings, epigenetic modifications, transcriptional alterations, protein biomarkers, metabolic disruptions, and gut microbiota dysbiosis associated with DR. Highlighted are key findings from genome-wide association studies (GWAS), Mendelian randomization (MR) studies, candidate gene association studies, and advancements in epigenetic mechanisms, revealing intricate disease pathways and potential therapeutic targets. Additionally, insights into altered metabolic profiles and gut microbiota compositions in DR underscore their emerging roles in disease progression and complications. Challenges and future directions in molecular epidemiological research are discussed to accelerate the translation of these findings into clinical applications for personalized DR management. The integration of multi-omics research findings may provide novel perspectives for facilitating rapid and accurate disease diagnosis, enabling dynamic disease monitoring, and advancing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yida Huang
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Suyun Rao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
3
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
4
|
Li X, Tan TE, Wong TY, Sun X. Diabetic retinopathy in China: Epidemiology, screening and treatment trends-A review. Clin Exp Ophthalmol 2023; 51:607-626. [PMID: 37381613 DOI: 10.1111/ceo.14269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision impairment in the global working-age population. In China, with one-third of the world's diabetes population estimated at 141 million, the blindness prevalence due to DR has increased significantly. The country's geographic variations in socioeconomic status have led to prominent disparities in DR prevalence, screening and management. Reported risk factors for DR in China include the classic ones, such as long diabetes duration, hyperglycaemia, hypertension and rural habitats. There is no national-level DR screening programme in China, but significant pilot efforts are underway for screening innovations. Novel agents with longer durations, noninvasive delivery or multi-target are undergoing clinical trials in China. Although optimised medical insurance policies have enhanced accessibility for expensive therapies like anti-VEGF drugs, further efforts in DR prevention and management in China are required to establish nationwide cost-effective screening programmes, including telemedicine and AI-based solutions, and to improve insurance coverage for related out-of-pocket expenses.
Collapse
Affiliation(s)
- Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tien-En Tan
- Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
5
|
Gouliopoulos N, Gazouli M, Karathanou K, Moschos MM. The association of AGER and ALDH2 gene polymorphisms with diabetic retinopathy. Eur J Ophthalmol 2022; 33:11206721221126287. [PMID: 36113108 DOI: 10.1177/11206721221126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
PURPOSE To evaluate the possible associations between AGER (rs1051993, rs2070600) and ALDH2 (rs671) gene polymorphisms with nonproliferative (NPDR) and proliferative (PDR) diabetic retinopathy, in a well-defined Greek population. MATERIALS 66 NPDR patients and 57 PDR patients participated in our study, along with 156 age- and gender-matched healthy-control subjects (CL). All the participants underwent a complete ophthalmological examination, while clinical and demographic data were collected. Furthermore, they were genotyped for the studied polymorphisms. RESULTS No significant differences were detected among the studied groups regarding the participants' age and gender status. We found that the ALDH2 AA genotype was significantly more frequent in PDR patients than in CL (p = 0.014). Furthermore, between NPDR and PDR groups, the AGER rs1051993 GT and TT genotype frequencies were significantly elevated in PDR patients (p < 0.0001 and 0.04, respectively). Moreover, we demonstrated that the heterozygous GT genotype in DR patients is accompanied by 71.11 times higher risk of developing PDR (OR = 71.11: 95% CI- 4.14-1215.2), while the homozygous TT genotype is associated with 12.71 times elevated risk for PDR development (OR = 12.71: 95% CI- 0.63-254.1). CONCLUSIONS We documented that the ALDH2 AA and AGER rs1051993 GT and TT genotypes were observed significantly more frequently in PDR Greek diabetic patients. Our findings also support the genetic theory, suggesting that heritability is significantly implicated in the development of DR, providing additional evidence in the understanding of DR pathogenesis.
Collapse
Affiliation(s)
- Nikolaos Gouliopoulos
- 1st Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| | | | - Marilita M Moschos
- 1st Department of Ophthalmology, Medical School, 393206National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Sarray S, Lamine LB, Dallel M, Jairajpuri D, Turki A, Sellami N, Ezzidi I, Abdelhadi M, Brock R, Ghorbel M, Mahjoub T. Association of MMP-2 genes variants with diabetic retinopathy in Tunisian population with type 2 diabetes. J Diabetes Complications 2022; 36:108182. [PMID: 35339376 DOI: 10.1016/j.jdiacomp.2022.108182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
AIMS Few studies investigated the association of genetic difference in metalloproteinase-2 (MMP-2) gene with diabetic retinopathy but with mixed outcome. To investigate the association between a set of MMP-2 genetic variants and the risk of diabetic retinopathy in an Arab Tunisian population with type 2 diabetes. SUBJECTS AND METHODS A retrospective case-control study comprising a total of 779 type 2 diabetes patients with or without diabetic retinopathy was conducted. Genotyping was prepared by TaqMan® SNP genotyping qRT-PCR. The variants used were rs243865 (C/T), rs243864 (T/G), rs243866 (G/T) and rs2285053 (C/T). RESULTS The minor allele frequency (MAF) of the rs243864 MMP-2 variant was significantly higher among diabetic retinopathy patients. Setting homozygous wild type genotype carrier as reference, the rs243864T/G allele was associated with increased risk of diabetic retinopathy under the dominant, recessive, and additive models which persisted when key covariates were controlled for, while a reduced risk of diabetic retinopathy progression was seen after adjustment between non-proliferative and proliferative diabetic patients. Furthermore, the heterozygous genotype GT of the rs243866 variant is positively associated with the risk of proliferative diabetic retinopathy in the additive model. A limited linkage disequilibrium (LD) was revealed between the four-matrix metalloproteinase-2 variants. Four-loci haplotype analysis identified, GCTC, TTTC, and GCTT haplotypes to be positively associated with the risk of diabetic retinopathy. CONCLUSION Our findings demonstrate that the MMP-2 variant rs243864 and 243866 are related to the susceptibility to diabetic retinopathy and the progression of the disease in an Arab Tunisian population with type 2 diabetes.
Collapse
Affiliation(s)
- Sameh Sarray
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain; Faculty of Sciences, University Tunis EL Manar, 2092 Manar II, Tunisia.
| | - Laila Ben Lamine
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Mariam Dallel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Deeba Jairajpuri
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain
| | - Amira Turki
- Faculty of Applied Medical Sciences, Northern Border University, Ara'ar, Saudi Arabia
| | - Nejla Sellami
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Intissar Ezzidi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia; Faculty of Sciences, University of Gafsa, Tunisia
| | | | - Roland Brock
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Center, Nijmegen, the Netherlands
| | - Mohamed Ghorbel
- Department of Ophthalmology, CHU Farhat Hached, Sousse, Tunisia
| | - Touhami Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| |
Collapse
|
7
|
Polymorphisms and Gene-Gene Interaction in AGER/IL6 Pathway Might Be Associated with Diabetic Ischemic Heart Disease. J Pers Med 2022; 12:jpm12030392. [PMID: 35330392 PMCID: PMC8950247 DOI: 10.3390/jpm12030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Although the genetic susceptibility to diabetes and ischemic heart disease (IHD) has been well demonstrated, studies aimed at exploring gene variations associated with diabetic IHD are still limited; Methods: Our study included 204 IHD cases who had been diagnosed with diabetes before the diagnosis of IHD and 882 healthy controls. Logistic regression was used to find the association of candidate SNPs and polygenic risk score (PRS) with diabetic IHD. The diagnostic accuracy was represented with AUC. Generalized multifactor dimensionality reduction (GMDR) was used to illustrate gene-gene interactions; Results: For IL6R rs4845625, the CT and TT genotypes were associated with a lower risk of diabetic IHD than the CC genotype (OR = 0.619, p = 0.033; OR = 0.542, p = 0.025, respectively). Haplotypes in the AGER gene (rs184003-rs1035798-rs2070600-rs1800624) and IL6R gene (rs7529229-rs4845625-rs4129267-rs7514452-rs4072391) were both significantly associated with diabetic IHD. PRS was associated with the disease (OR = 1.100, p = 0.005) after adjusting for covariates, and the AUC were 0.763 (p < 0.001). The GMDR analysis suggested that rs184003 and rs4845625 were the best interaction model after permutation testing (p = 0.001) with a cross-validation consistency of 10/10; Conclusions: SNPs and haplotypes in the AGER and IL6R genes and the interaction of rs184003 and rs4845625 were significantly associated with diabetic IHD.
Collapse
|
8
|
Ahuja P, Waris A, Siddiqui SS, Mukherjee A. Single nucleotide variants of receptor for advanced glycation end-products (AGER) gene: is it a new opening in the risk assessment of diabetic retinopathy?-a review. J Genet Eng Biotechnol 2022; 20:17. [PMID: 35099614 PMCID: PMC8804138 DOI: 10.1186/s43141-022-00297-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes. There is strong evidence suggesting that DR has an inheritable component. The interaction between advanced glycation end products (AGEs) and their receptor is integral in the pathogenesis of diabetic retinopathy and its various complications, retinopathy being one of them. OVERVIEW AND METHODOLOGY This review discusses the existing literature on the association between single nucleotide variants (SNV) of AGER gene and the risk of DR. It also discusses the current understanding of the AGE-AGER pathway in diabetic retinopathy. Through our article we have tried to consolidate all the available information about these SNVs associated with diabetic retinopathy in a succinct tabular form. Additionally, a current understanding of the AGE-AGER interaction and its deleterious effects on the cells of the retina has been discussed in detail to provide comprehensive information about the topic to the reader. A literature review was performed on PubMed, Cochrane Library, and Google Scholar for studies to find existing literature on the association between AGER gene SNVs and the risk, progression and severity of developing DR. This article will encourage scientific communication and discussion about possibly devising genetic markers for an important cause of blindness both in developed and developing countries, i.e., diabetic retinopathy. RESULT Based on genetic studies done in Indian and Chinese population G82S(rs2070600) was positively associated with Diabetic Retinopathy. Patients of diabetic retinopathy in Caucasian population had -T374A(rs1800624) polymorphism. + 20T/A was found to be associated with the disease in a study done in UK. Association with G1704T(rs184003) was seen in Chinese and Malaysian population. A Chinese study found its association with CYB242T. -T429C(rs1800625) SNV was not associated with DR in any of the studies. G2245A(rs55640627) was positively associated with the disease process in Malaysian population. It was not associated in Malaysian and Chinese population. Promoter variant rs1051993 has also been found to a susceptible SNV in the Chinese population. CONCLUSION While providing a comprehensive review of the existing information, we would like to emphasize on a large, multi-centric, trial with a much larger and varied population base to definitely determine these single nucleotide variants predisposing diabetic individuals.
Collapse
Affiliation(s)
- Pragya Ahuja
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Abdul Waris
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Sheelu Shafiq Siddiqui
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| |
Collapse
|
9
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
10
|
Multiple Single Nucleotide Polymorphism Testing Improves the Prediction of Diabetic Retinopathy Risk with Type 2 Diabetes Mellitus. J Pers Med 2021; 11:jpm11080689. [PMID: 34442333 PMCID: PMC8398882 DOI: 10.3390/jpm11080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most frequent causes of irreversible blindness, thus prevention and early detection of DR is crucial. The purpose of this study is to identify genetic determinants of DR in individuals with type 2 diabetic mellitus (T2DM). A total of 551 T2DM patients (254 with DR, 297 without DR) were included in this cross-sectional research. Thirteen T2DM-related single nucleotide polymorphisms (SNPs) were utilized for constructing genetic risk prediction model. With logistic regression analysis, genetic variations of the FTO (rs8050136) and PSMD6 (rs831571) polymorphisms were independently associated with a higher risk of DR. The area under the curve (AUC) calculated on known nongenetic risk variables was 0.704. Based on the five SNPs with the highest odds ratio (OR), the combined nongenetic and genetic prediction model improved the AUC to 0.722. The discriminative accuracy of our 5-SNP combined risk prediction model increased in patients who had more severe microalbuminuria (AUC = 0.731) or poor glycemic control (AUC = 0.746). In conclusion, we found a novel association for increased risk of DR at two T2DM-associated genetic loci, FTO (rs8050136) and PSMD6 (rs831571). Our predictive risk model presents new insights in DR development, which may assist in enabling timely intervention in reducing blindness in diabetic patients.
Collapse
|
11
|
Qayyum S, Afzal M, Naveed AK. Association analysis of 374T/A (rs1800624) receptor for advanced glycation end-products (RAGE) gene polymorphism with diabetic retinopathy in Pakistani patients. Pak J Med Sci 2021; 37:733-739. [PMID: 34104157 PMCID: PMC8155428 DOI: 10.12669/pjms.37.3.3670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES to determine the relationship of 374T/A (rs1800624) polymorphism in the gene encoding RAGE with Type-2 diabetes mellitus (T2DM), diabetic retinopathy (DR) and serum soluble RAGE (sRAGE) level in Pakistani patients. METHODS A case-control study, conducted from January 2017 to December 2018, involving 150 healthy controls (HC), 150 T2DM patients with no retinopathy (DNR) and 150 DR patients diagnosed by coloured fundus photography. Tetra-primer amplification refractory mutation system - polymerase chain reaction (T-ARMS-PCR) was used for genotyping. Serum sRAGE levels were measured by enzyme-linked immunosorbent assays (ELIZA). RESULTS The frequency of TT, TA and AA genotypes of rs1800624 polymorphism were: 92.7%, 6%, 1.3% in HC, 80%, 17.3%, 2.7% in DNR and 76.7%, 19.3%, 4.3% in DR groups. Heterozygous TA genotype and mutant A allele showed significant association with diabetes and DR vs HC. In dominant model, mutant allele showed significant association with DNR and DR vs HC. No significant association of rs1800624 was detected with DR and its sub-groups, non-proliferative DR (NPDR) and proliferative DR (PDR) vs DNR. Dividing NPDR into mild, moderate and severe, heterozygous TA genotype showed significant association with moderate and severe NPDR vs DNR. In DNR and DR groups, TA genotype was significantly associated with raised sRAGE. CONCLUSION rs1800624 RAGE gene polymorphism might be a risk factor for T2DM and NPDR in Pakistani patients. Raised sRAGE levels have a positive correlation with PDR and are associated with heterozygosity of rs1800624 polymorphism in DNR and DR groups.
Collapse
Affiliation(s)
- Shazia Qayyum
- Dr. Shazia Qayyum, MPhil. Department of Pathology, Riphah International University, Islamabad, Pakistan
| | - Muhammad Afzal
- Muhammad Afzal, MPhil. Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Prof. Dr. Abdul Khaliq Naveed, FCPS, PhD. Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
12
|
Gao W, Zhu R, Yang L. Association of tumor necrosis factor-alpha -308 G/A and -238 G/A polymorphism with diabetic retinopathy: a systematic review and updated meta-analysis. Ophthalmic Res 2020; 64:903-915. [PMID: 33279899 DOI: 10.1159/000513586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. OBJECTIVES To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. METHOD Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. RESULTS For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. CONCLUSION The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China,
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Ai X, Yu P, Hou Y, Song X, Luo J, Li N, Lai X, Wang X, Meng X. A review of traditional Chinese medicine on treatment of diabetic retinopathy and involved mechanisms. Biomed Pharmacother 2020; 132:110852. [DOI: 10.1016/j.biopha.2020.110852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
|