1
|
Xu S, Li J, Long K, Liang X, Wang W. Light-Activated Anti-Vascular Combination Therapy against Choroidal Neovascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404218. [PMID: 39206706 PMCID: PMC11516295 DOI: 10.1002/advs.202404218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Choroidal neovascularization (CNV) underlies the crux of many angiogenic eye disorders. Although medications that target vascular endothelial growth factor (VEGF) are approved for treating CNV, their effectiveness in destroying new blood vessels is limited, and invasive intravitreal administration is required. Additionally, other drugs that destroy established neovessels, such as combretastatin A-4, may have systemic side effects that limit their therapeutic benefits. To overcome these shortcomings, a two-pronged anti-vascular approach is presented for CNV treatment using a photoactivatable nanoparticle system that can release a VEGF receptor inhibitor and a vascular disrupting agent when irradiated with 690 nm light. The nanoparticles can be injected intravenously to enable anti-angiogenic and vascular disrupting combination therapy for CNV through light irradiation to the eyes. This approach can potentiate therapeutic effects while maintaining a favorable biosafety profile for choroidal vascular diseases.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Jia Li
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Xiaoling Liang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhou510060China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| |
Collapse
|
2
|
Cai Y, Tu H, Wu C, Liu T, Chen S, Shen L, Xiao Q, Zhao S, Xu S, Lin W, Yan P, Dong J. Therapeutic potential of elema-1,3,7(11),8-tetraen-8,12-lactam from Curcuma wenyujin on diabetic retinopathy via anti-inflammatory and anti-angiogenic pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116843. [PMID: 37414197 DOI: 10.1016/j.jep.2023.116843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the causes of diabetic retinopathy (DR) are blood stasis and heat. Curcuma wenyujin Y. H. Chen & C. Ling and its extracts have the effects of promoting blood circulation to remove blood stasis, clearing the heart, and cooling the blood, and have been used in the treatment of DR. Elema-1,3,7 (11),8-tetraen-8,12-lactam (Ele), an N-containing sesquiterpene isolated from this plant. However, the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR are still unknown. AIM OF THE STUDY To evaluate the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR. MATERIALS AND METHODS In vitro, anti-inflammatory and anti-angiogenic effects were assessed using TNF-α or VEGF-stimulated HUVECs. Protein expression was analyzed using Western blotting. ICAM-1 and TNF-α mRNA expressions were analyzed using real-time quantitative RT-PCR. The therapeutic potential in DR was assessed using both animal models of STZ-induced diabetes and oxygen-induced retinopathy. The retinal vascular permeability was measured using Evans blue, and the quantitation of retinal leukostasis using FITC-coupled Con A. The retinal neovascular tufts were analyzed using fluorescein angiography and counting pre-retinal vascular lumens. RESULTS Ele inhibited NF-κB pathway, and ICAM-1, TNF-α mRNA expression in TNF-α- stimulated HUVECs. It also inhibits the multistep process of angiogenesis by inhibiting the phosphorylation of VEGFR2 and its downstream signaling kinases Src, Erk1/2, Akt, and mTOR in VEGF-stimulated HUVECs. Intravitreal injection of Ele can significantly reduce retinal microvascular leakage, leukostasis, and expression of ICAM-1, TNF-α in diabetic rats and inhibits oxygen-induced retinal neovascularization and VEGFR2 phosphorylation in OIR mice. CONCLUSIONS Ele has anti-inflammatory and anti-angiogenic effects through inhibiting NF-κB and VEGFR2 signaling pathways, and it may be a potential drug candidate for DR.
Collapse
Affiliation(s)
- Yuan Cai
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Hongfeng Tu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Cimei Wu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Tong Liu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Shuangshuang Chen
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Linlin Shen
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Qinwen Xiao
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sumin Zhao
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Shaoying Xu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Weiwei Lin
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Pengcheng Yan
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Zeng J, Wang Y, Zhu M, Wu M, Zhou Y, Wang Q, Xu Y, Lin F, Wang J, Li Y, Liang S, Wang Z, Xie L, Liu X. Neutrophil extracellular traps boost laser-induced mouse choroidal neovascularization through the activation of the choroidal endothelial cell TLR4/HIF-1α pathway. FEBS J 2023; 290:5395-5410. [PMID: 37552110 DOI: 10.1111/febs.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Choroidal neovascularization (CNV) is characterized by the infiltration of immune cells, particularly neutrophils. Neutrophil extracellular trap (NET) facilitates the angiogenesis of pulmonary endothelial cells via activating Toll-like receptor 4 (TLR4). TLR4 promotes the expression of transcription factor hypoxia inducible factor-1α (HIF-1α), which promotes inflammation and angiogenesis via the up-regulation of metalloproteinase-9 (MMP-9) and interleukin-1β (IL-1β). In the present study, we aimed to identify the formation of NET and its role in CNV. Our results showed that NET levels were increased in a mouse laser-induced CNV model via oxidative stress, whereas the inhibition of NET alleviated CNV. In vitro, NET activated the TLR4/HIF-1α pathway in human choroidal endothelial cells (HCECs). Additionally, NET increased the transcription and expression of MMP-9 and IL-1β in HCECs via activating the TLR4/HIF-1α pathway. Meanwhile, NET promoted the inflammatory response accompanied by the proliferation, migration and tube formation of HCECs in a MMP-9- and IL-1β-dependent manner. In conclusion, NET was up-regulated in CNV and promoted the formation of CNV via activating the TLR4/HIF-1α pathway in choroidal endothelial cells. Our data uncovered the novel role of NET in promoting the formation of CNV. The underlying mechanism of NET could be targeted to delay the process of CNV.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Manhui Zhu
- Department of Pathology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Min Wu
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Qiaoyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqian Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Lin
- Medical College, Nantong University, China
| | - Jiaqi Wang
- Medical College, Nantong University, China
| | - Yuxuan Li
- Medical College, Nantong University, China
| | | | - Ziyu Wang
- Medical College, Nantong University, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, China
| |
Collapse
|
4
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
5
|
Bilbao-Malavé V, González-Zamora J, de la Puente M, Recalde S, Fernandez-Robredo P, Hernandez M, Layana AG, Saenz de Viteri M. Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Age Related Macular Degeneration, Role in Pathophysiology, and Possible New Therapeutic Strategies. Antioxidants (Basel) 2021; 10:1170. [PMID: 34439418 PMCID: PMC8388889 DOI: 10.3390/antiox10081170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Age related macular degeneration (AMD) is the main cause of legal blindness in developed countries. It is a multifactorial disease in which a combination of genetic and environmental factors contributes to increased risk of developing this vision-incapacitating condition. Oxidative stress plays a central role in the pathophysiology of AMD and recent publications have highlighted the importance of mitochondrial dysfunction and endoplasmic reticulum stress in this disease. Although treatment with vascular endothelium growth factor inhibitors have decreased the risk of blindness in patients with the exudative form of AMD, the search for new therapeutic options continues to prevent the loss of photoreceptors and retinal pigment epithelium cells, characteristic of late stage AMD. In this review, we explain how mitochondrial dysfunction and endoplasmic reticulum stress participate in AMD pathogenesis. We also discuss a role of several antioxidants (bile acids, resveratrol, melatonin, humanin, and coenzyme Q10) in amelioration of AMD pathology.
Collapse
Affiliation(s)
- Valentina Bilbao-Malavé
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Jorge González-Zamora
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Miriam de la Puente
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfredo Garcia Layana
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Saenz de Viteri
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|