1
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
4
|
Meshko B, Volatier TLA, Mann J, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander BR, Cursiefen C, Notara M. Anti-Inflammatory and Anti-(Lymph)angiogenic Properties of an ABCB5+ Limbal Mesenchymal Stem Cell Population. Int J Mol Sci 2024; 25:9702. [PMID: 39273646 PMCID: PMC11395824 DOI: 10.3390/ijms25179702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5- cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues.
Collapse
Affiliation(s)
- Berbang Meshko
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Thomas L. A. Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Johanna Mann
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Mark A. Kluth
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA;
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Bruce R. Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA;
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
5
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Javed Z, Daigavane S. Harnessing Corneal Stromal Regeneration for Vision Restoration: A Comprehensive Review of the Emerging Treatment Techniques for Keratoconus. Cureus 2024; 16:e69835. [PMID: 39435192 PMCID: PMC11492026 DOI: 10.7759/cureus.69835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Keratoconus is a progressive corneal disorder characterized by thinning and conical protrusion, leading to visual impairment that often necessitates advanced treatment strategies. Traditional management options, including corrective lenses, corneal cross-linking (CXL), and surgical interventions such as corneal transplants and intracorneal ring segments (ICRS), address symptoms but have limitations, especially in progressive or advanced cases. Recent advancements in corneal stromal regeneration offer promising alternatives for enhancing vision restoration and halting disease progression. This review explores emerging techniques focused on corneal stromal regeneration, emphasizing cell-based therapies, tissue engineering, and gene therapy. Cell-based approaches, including corneal stromal stem cells and adipose-derived stem cells, are promising to promote tissue repair and functional recovery. Tissue engineering techniques, such as developing synthetic and biological scaffolds and 3D bioprinting, are being investigated for their ability to create viable corneal grafts and implants. Additionally, gene therapy and molecular strategies, including gene editing technologies and the application of growth factors, are advancing the potential for targeted treatment and regenerative medicine. Despite these advancements, challenges remain, including technical limitations, safety concerns, and ethical considerations. This review aims to provide a comprehensive overview of these innovative approaches, highlighting their current status, clinical outcomes, and future directions in keratoconus management.
Collapse
Affiliation(s)
- Zoya Javed
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Ahadi M, Ramin S, Abbasi A, Tahmouri H, Hosseini SB. Mini review: human clinical studies of stem cell therapy in keratoconus. BMC Ophthalmol 2024; 24:35. [PMID: 38263090 PMCID: PMC10804477 DOI: 10.1186/s12886-024-03297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Treatment of keratoconus is one of the most interesting research fields for researchers in the world. Regenerative medicine based on human stem cells in the treatment of keratoconus has recently received attention. Despite extensive laboratory and animal studies in regenerative medicine of cornea, there are limited clinical studies in keratoconus. These studies showed promising results of stem cell therapy. In initial studies, the transplantation of these cells into stroma was associated with increased vision and improved corneal parameters without side effects. In this article, we tried to review different aspects of keratoconus stem cell therapy, including cell extraction and culture, surgical procedure, effectiveness and safety of this method in human clinical studies.
Collapse
Affiliation(s)
- Masoumeh Ahadi
- Department of Optometry, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahrokh Ramin
- Department of Optometry, School of Rehabilitation Sciences, Incubation Center for Pharmaceutical Technology (ICPT), Cell Therapy Department, Red Crescent Pharmaceutical and Clinical Complex, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Abbasi
- Department of Optometry, School of Rehabilitation Sciences, Incubation Center for Pharmaceutical Technology (ICPT), Cell Therapy Department, Red Crescent Pharmaceutical and Clinical Complex, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tahmouri
- Department of Optometry, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bagher Hosseini
- Department of Ophthalmology, Eye Bank of Islamic Republic of Iran, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Shetty R, Mahendran K, Joshi PD, Jeyabalan N, Jayadev C, Das D. Corneal stromal regeneration-keratoconus cell therapy: a review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3051-3065. [PMID: 37074409 DOI: 10.1007/s00417-023-06064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Keratoconus is a corneal ectatic disease caused by stromal thinning leading to astigmatism and progressive loss of vision. Loss of the keratocytes and excessive degradation of collagen fibres by matrix metalloproteinases are the molecular signatures of the disease. Despite several limitations, corneal collagen cross-linking and keratoplasty are the most widely used treatment options for keratoconus. In the pursuit of alternative treatment modalities, clinician scientists have explored cell therapy paradigms for treating the condition. METHODS Articles pertaining to keratoconus cell therapy with relevant key words were used to search in PubMed, Researchgate, and Google Scholar. The articles were selected based on their relevance, reliability, publication year, published journal, and accessibility. RESULTS Various cellular abnormalities have been reported in keratoconus. Diverse cell types such as mesenchymal stromal cells, dental pulp cells, bone marrow stem cells, haematopoietic stem cells, adipose-derived stem cells apart from embryonic and induced pluripotent stem cells can be used for keratoconus cell therapy. The results obtained show that there is a potential for these cells from various sources as a viable treatment option. CONCLUSION There is a need for consensus with respect to the source of cells, mode of delivery, stage of disease, and duration of follow-up, to establish a standard operating protocol. This would eventually widen the cell therapy options for corneal ectatic diseases beyond keratoconus.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Krithikaa Mahendran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | - Parth D Joshi
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | | | - Chaitra Jayadev
- Department of Vitreo-Retina, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India.
- Stem Cell Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Narayana Health City, 258/A Bommasandra Industrial Area, Bangalore, 560099, Karnataka, India.
| |
Collapse
|
9
|
Bui AD, Truong A, Pasricha ND, Indaram M. Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions. Clin Ophthalmol 2023; 17:2705-2718. [PMID: 37736107 PMCID: PMC10511017 DOI: 10.2147/opth.s392665] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Keratoconus is a disorder characterized by progressive corneal thinning and steepening that may result in significant visual impairment secondary to high astigmatism, corneal scarring, or even corneal perforation. Early detection and screening of keratoconus are essential for effective management and treatment. Several screening methods, such as corneal topography and tomography, corneal biomechanics, and genetic testing, are being developed to detect keratoconus at an early stage. Once detected, prevention of progression is the mainstay of keratoconus management. Corneal collagen cross-linking is a minimally invasive treatment option that can slow or halt the progression of keratoconus. Additionally, recent studies have investigated the potential use of copper sulfate eye drops (IVMED-80) and extracellular vesicles to prevent the progression of keratoconus as non-invasive treatment options. For visual rehabilitation, currently available treatments include scleral lenses, intracorneal ring segments, corneal allogenic intrastromal ring segments, and deep anterior lamellar keratoplasty. The safety and efficacy of these emerging treatment options for keratoconus are currently being investigated.
Collapse
Affiliation(s)
- Anh D Bui
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Angeline Truong
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Neel D Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Maanasa Indaram
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Moshirfar M, Masud M, Harvey DH, Payne C, Bruce E, Ronquillo YC, Hoopes PC. The Multifold Etiologies of Limbal Stem Cell Deficiency: A Comprehensive Review on the Etiologies and Additional Treatment Options for Limbal Stem Cell Deficiency. J Clin Med 2023; 12:4418. [PMID: 37445454 DOI: 10.3390/jcm12134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Given the various ocular manifestations of limbal stem cell insufficiency, an awareness of the genetic, acquired, and immunological causes and associated additional treatments of limbal stem cell deficiency (LSCD) is essential for providers. We performed a comprehensive review of the literature on the various etiologies and specific therapies for LSCD. The resources utilized in this review included Medline (PubMed), Embase, and Google Scholar. All English-language articles and case reports published from November 1986 through to October 2022 were reviewed in this study. There were collectively 99 articles on these topics. No other exclusion criteria were applied. Depending on the etiology, ocular manifestations of limbal stem cell deficiency range from dry eye syndrome and redness to more severe outcomes, including corneal ulceration, ocular surface failure, and vision loss. Identifying the source of damage for LSCD is critical in the treatment process, given that therapy may extend beyond the scope of the standard protocol, including artificial tears, refractive surgery, and allogeneic stem cell transplants. This comprehensive review of the literature demonstrates the various genetic, acquired, and immunological causes of LSCD and the spectrum of supplemental therapies available.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
- John A. Moran Eye Center, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Utah Lions Eye Bank, Murray, UT 84107, USA
| | - Maliha Masud
- School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Devon Hori Harvey
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Carter Payne
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| | - Elayna Bruce
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Philip C Hoopes
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| |
Collapse
|
11
|
Yam GHF, Yang T, Geary ML, Santra M, Funderburgh M, Rubin E, Du Y, Sahel JA, Jhanji V, Funderburgh JL. Human corneal stromal stem cells express anti-fibrotic microRNA-29a and 381-5p - A robust cell selection tool for stem cell therapy of corneal scarring. J Adv Res 2023; 45:141-155. [PMID: 35623612 PMCID: PMC10006527 DOI: 10.1016/j.jare.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Corneal blindness due to scarring is treated with corneal transplantation. However, a global problem is the donor material shortage. Preclinical and clinical studies have shown that cell-based therapy using corneal stromal stem cells (CSSCs) suppresses corneal scarring, potentially mediated by specific microRNAs transported in extracellular vesicles (EVs). However, not every CSSC batch from donors achieves similar anti-scarring effects. OBJECTIVES To examine miRNA profiles in EVs from human CSSCs showing "healing" versus "non-healing" effects on corneal scarring and to design a tool to select CSSCs with strong healing potency for clinical applications. METHODS Small RNAs from CSSC-EVs were extracted for Nanostring nCounter Human miRNA v3 assay. MicroRNAs expressed > 20 folds in "healing" EVs (P < 0.05) were subject to enriched gene ontology (GO) term analysis. MiRNA groups with predictive regulation on inflammatory and fibrotic signalling were studied by mimic transfection to (1) mouse macrophages (RAW264.7) for M1 phenotype assay; (2) human corneal keratocytes for cytokine-induced fibrosis, and (3) human CSSCs for corneal scar prevention in vivo. The expression of miR-29a was screened in additional CSSC batches and the anti-scarring effect of cells was validated in mouse corneal wounds. RESULTS Twenty-one miRNAs were significantly expressed in "healing" CSSC-EVs and 9 miRNA groups were predicted to associate with inflammatory and fibrotic responses, and tissue regeneration (P <10-6). Overexpression of miR-29a and 381-5p significantly prevented M1 phenotype transition in RAW264.7 cells after lipopolysaccharide treatment, suppressed transforming growth factor β1-induced fibrosis marker expression in keratocytes, and reduced scarring after corneal injury. High miR-29a expression in EV fractions distinguished human CSSCs with strong healing potency, which inhibited corneal scarring in vivo. CONCLUSION We characterized the anti-inflammatory and fibrotic roles of miR-29a and 381-5p in CSSCs, contributing to scar prevention. MiR-29a expression in EVs distinguished CSSCs with anti-scarring quality, identifying good quality cells for a scarless corneal healing.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Tianbing Yang
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Mithun Santra
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Martha Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Elizabeth Rubin
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jose A Sahel
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
12
|
Kaidzu S, Sugihara K, Sasaki M, Nishiaki A, Ohashi H, Igarashi T, Tanito M. Safety Evaluation of Far-UV-C Irradiation to Epithelial Basal Cells in the Corneal Limbus. Photochem Photobiol 2022. [PMID: 36437576 DOI: 10.1111/php.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Basal cells in the corneal limbus play an important role in the turnover cycle because they are the source of all cells that constitute the corneal epithelium. We examined the penetration depth of ultraviolet (UV) light in the corneal limbus and assessed the safety of Far-UV-C on stem cells in the basal area of the corneal limbus. Rats were irradiated with UV at peaks of 207, 222, 235, 254 and 311 nm while under anesthesia. The UV penetration depth in the rat corneal limbal epithelium was wavelength dependent: 311 nm UV-B and 254 nm UV-C reached the basal cells of the epithelium, and 235 nm radiation reached the middle area; however, 207 and 222 nm UV-C reached only the superficial layer of the epithelium. Porcine cornea, which is similar to the human eye in size and structure, were irradiated with 222 and 254 nm UV-C. As in rats, 222 nm UV-C reached only the superficial layer of the porcine corneal limbal epithelium. These results indicate that Far-UV-C, such as radiation of wavelengths of 207 and 222 nm, could not reach corneal epithelial stem cells, i.e. the cells remained intact. It is unlikely that the turnover of the corneal epithelium is obstructed or disrupted by exposure to Far-UV-C.
Collapse
Affiliation(s)
- Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kazunobu Sugihara
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
13
|
Tavakkoli F, Damala M, Koduri MA, Gangadharan A, Rai AK, Dash D, Basu S, Singh V. Transcriptomic Profiling of Human Limbus-Derived Stromal/Mesenchymal Stem Cells-Novel Mechanistic Insights into the Pathways Involved in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23158226. [PMID: 35897793 PMCID: PMC9368612 DOI: 10.3390/ijms23158226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Limbus-derived stromal/mesenchymal stem cells (LMSCs) are vital for corneal homeostasis and wound healing. However, despite multiple pre-clinical and clinical studies reporting the potency of LMSCs in avoiding inflammation and scarring during corneal wound healing, the molecular basis for the ability of LMSCs remains unknown. This study aimed to uncover the factors and pathways involved in LMSC-mediated corneal wound healing by employing RNA-Sequencing (RNA-Seq) in human LMSCs for the first time. We characterized the cultured LMSCs at the stages of initiation (LMSC−P0) and pure population (LMSC−P3) and subjected them to RNA-Seq to identify the differentially expressed genes (DEGs) in comparison to native limbus and cornea, and scleral tissues. Of the 28,000 genes detected, 7800 DEGs were subjected to pathway-specific enrichment Gene Ontology (GO) analysis. These DEGs were involved in Wnt, TGF-β signaling pathways, and 16 other biological processes, including apoptosis, cell motility, tissue remodeling, and stem cell maintenance, etc. Two hundred fifty-four genes were related to wound healing pathways. COL5A1 (11.81 ± 0.48) and TIMP1 (20.44 ± 0.94) genes were exclusively up-regulated in LMSC−P3. Our findings provide new insights involved in LMSC-mediated corneal wound healing.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Mukesh Damala
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Abhilash Gangadharan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Amit K. Rai
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Debasis Dash
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Sayan Basu
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-6810-2286
| |
Collapse
|
14
|
Combined Therapy Using Human Corneal Stromal Stem Cells and Quiescent Keratocytes to Prevent Corneal Scarring after Injury. Int J Mol Sci 2022; 23:ijms23136980. [PMID: 35805991 PMCID: PMC9267074 DOI: 10.3390/ijms23136980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Corneal blindness due to scarring is conventionally treated by corneal transplantation, but the shortage of donor materials has been a major issue affecting the global success of treatment. Pre-clinical and clinical studies have shown that cell-based therapies using either corneal stromal stem cells (CSSC) or corneal stromal keratocytes (CSK) suppress corneal scarring at lower levels. Further treatments or strategies are required to improve the treatment efficacy. This study examined a combined cell-based treatment using CSSC and CSK in a mouse model of anterior stromal injury. We hypothesize that the immuno-regulatory nature of CSSC is effective to control tissue inflammation and delay the onset of fibrosis, and a subsequent intrastromal CSK treatment deposited collagens and stromal specific proteoglycans to recover a native stromal matrix. Using optimized cell doses, our results showed that the effect of CSSC treatment for suppressing corneal opacities was augmented by an additional intrastromal CSK injection, resulting in better corneal clarity. These in vivo effects were substantiated by a further downregulated expression of stromal fibrosis genes and the restoration of stromal fibrillar organization and regularity. Hence, a combined treatment of CSSC and CSK could achieve a higher clinical efficacy and restore corneal transparency, when compared to a single CSSC treatment.
Collapse
|
15
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|