1
|
Hadi Z, Ferdousi A, Paknejadi M. Effects of Thymus daenensis Essential Oil-loaded chitosan Nanoparticles on BCR1 Gene Expression in Candida Parapsilosis. ARCHIVES OF RAZI INSTITUTE 2024; 79:973-980. [PMID: 40292051 PMCID: PMC12018755 DOI: 10.32592/ari.2024.79.5.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/09/2023] [Indexed: 04/30/2025]
Abstract
Candida parapsilosis is a non-albicans species with a high prevalence and potential for nosocomial infections. The BCR1 gene plays a critical role in regulating virulence factors in this species. This study aimed to evaluate the effects of Thymus daenensis essential oil encapsulated in chitosan nanoparticles (TDNs) on the expression of the BCR1 gene in C. parapsilosis isolates from animal and human sources. Sixty C. parapsilosis isolates (30 from human and 30 from veterinary sources) were screened for the presence of the BCR1 gene via PCR. The TDNs were synthesized and characterized using various techniques. The isolates carrying the BCR1 gene were treated with TDNs to determine the minimum inhibitory concentration (MIC). The expression of the BCR1 gene after treatment with sub-MIC concentrations of TDNs was measured by real-time PCR and compared with the control group. The results were statistically analyzed. Five out of 60 isolates (8.33%) tested positive for the BCR1 gene. The physical properties of TDNs showed that they had a spherical shape, an average size of 92.3 nm, a polydispersity index of 0.129±0.03, a zeta potential of +48.3 mV, and an encapsulation efficiency of 88.6 ± 0.2%. The MIC range for TDNs in these isolates was 0.032-1 μg/ml. Treatment with TDNs significantly reduced the expression of the BCR1 gene in all five isolates compared with the control group (p=0.012). TDN has substantial potential for inhibiting the expression of the BCR1 gene, associated with virulence in C. parapsilosis. This may enhance the antifungal activity of TDN and reduce the risk of nosocomial infections caused by this species.
Collapse
Affiliation(s)
- Z Hadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran Razi Vaccine and Serum
| | - A Ferdousi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran Razi Vaccine and Serum
| | - M Paknejadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran Razi Vaccine and Serum
| |
Collapse
|
2
|
Ghiaee Shamloo A, Zarrinfar H, Jaafari MR, Yadegari MH. Inhibitory effect of Nigella sativa oil loaded to liposomal nanocarriers on Candida parapsilosis isolates. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:560-568. [PMID: 39267937 PMCID: PMC11389775 DOI: 10.18502/ijm.v16i4.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Candida parapsilosis is the second most common species causing infectious diseases and can lead to biofilm resistance. This study aims to adjust and synthesize a liposomal compound of Nigella sativa and evaluate its antifungal properties against C. parapsilosis isolates. Materials and Methods The liposomal formulation of N. sativa was optimized through the utilization of transmission electron microscopy (TEM), particle size analysis, zeta potential measurement, and UV-visible spectrophotometry. Furthermore, an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was conducted on peripheral blood mononuclear cells (PBMCs). The antifungal efficacy was evaluated in accordance with the M27-A3 guideline. Results The minimum inhibitory concentrations (MICs) of N. sativa oil and the liposomal formulation on C. parapsilosis isolates ranged from 128 to 8 µg/mL and from 250 to 31.25 µg/mL, respectively. The MIC50 and MIC90 values of N. sativa oil and the liposomal formulation were 125, 187, and 32, 96 µg/mL, respectively. The viability percentage of cells treated with the liposomal formulation and free N. sativa oil was 91% and 85%, respectively. Conclusion The cytotoxicity of free N. sativa was significantly reduced when using nanoliposomes. The liposomal form of N. sativa showed greater antifungal properties compared to the free N. sativa extract against C. parapsilosis isolates.
Collapse
Affiliation(s)
- Ardalan Ghiaee Shamloo
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Yadegari
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Yamin D, Akanmu MH, Al Mutair A, Alhumaid S, Rabaan AA, Hajissa K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:188. [PMID: 36006280 PMCID: PMC9416642 DOI: 10.3390/tropicalmed7080188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A reliable estimate of Candida parapsilosis antifungal susceptibility in candidemia patients is increasingly important to track the spread of C. parapsilosis bloodstream infections and define the true burden of the ongoing antifungal resistance. A systematic review and meta-analysis (SRMA) were conducted aiming to estimate the global prevalence and identify patterns of antifungal resistance. A systematic literature search of the PubMed, Scopus, ScienceDirect and Google Scholar electronic databases was conducted on published studies that employed antifungal susceptibility testing (AFST) on clinical C. parapsilosis isolates globally. Seventy-nine eligible studies were included. Using meta-analysis of proportions, the overall pooled prevalence of three most important antifungal drugs; Fluconazole, Amphotericin B and Voriconazole resistant C. parapsilosis were calculated as 15.2% (95% CI: 9.2-21.2), 1.3% (95% CI: 0.0-2.9) and 4.7% (95% CI: 2.2-7.3), respectively. Based on study enrolment time, country/continent and AFST method, subgroup analyses were conducted for the three studied antifungals to determine sources of heterogeneity. Timeline and regional differences in C. parapsilosis prevalence of antifungal resistance were identified with the same patterns among the three antifungal drugs. These findings highlight the need to conduct further studies to assess and monitor the growing burden of antifungal resistance, to revise treatment guidelines and to implement regional surveillance to prevent further increase in C. parapsilosis drug resistance emerging recently.
Collapse
Affiliation(s)
- Dina Yamin
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Mutiat Hammed Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| |
Collapse
|
4
|
Candida parapsilosis Colony Morphotype Forecasts Biofilm Formation of Clinical Isolates. J Fungi (Basel) 2021; 7:jof7010033. [PMID: 33430377 PMCID: PMC7827155 DOI: 10.3390/jof7010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida parapsilosis is a frequent cause of fungal bloodstream infections, especially in critically ill neonates or immunocompromised patients. Due to the formation of biofilms, the use of indwelling catheters and other medical devices increases the risk of infection and complicates treatment, as cells embedded in biofilms display reduced drug susceptibility. Therefore, biofilm formation may be a significant clinical parameter, guiding downstream therapeutic choices. Here, we phenotypically characterized 120 selected isolates out of a prospective collection of 215 clinical C. parapsilosis isolates, determining biofilm formation, major emerging colony morphotype, and antifungal drug susceptibility of the isolates and their biofilms. In our isolate set, increased biofilm formation capacity was independent of body site of isolation and not predictable using standard or modified European Committee on Antimicrobial Susceptibility Testing (EUCAST) drug susceptibility testing protocols. In contrast, biofilm formation was strongly correlated with the appearance of non-smooth colony morphotypes and invasiveness into agar plates. Our data suggest that the observation of non-smooth colony morphotypes in cultures of C. parapsilosis may help as an indicator to consider the initiation of anti-biofilm-active therapy, such as the switch from azole- to echinocandin- or polyene-based strategies, especially in case of infections by potent biofilm-forming strains.
Collapse
|
5
|
Guo J, Zhang M, Qiao D, Shen H, Wang L, Wang D, Li L, Liu Y, Lu H, Wang C, Ding H, Zhou S, Zhou W, Wei Y, Zhang H, Xi W, Zheng Y, Wang Y, Tang R, Zeng L, Xu H, Wu W. Prevalence and Antifungal Susceptibility of Candida parapsilosis Species Complex in Eastern China: A 15-Year Retrospective Study by ECIFIG. Front Microbiol 2021; 12:644000. [PMID: 33746933 PMCID: PMC7969513 DOI: 10.3389/fmicb.2021.644000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Candida parapsilosis complex is one of the most common non-albicans Candida species that cause candidemia, especially invasive candidiasis. The purpose of this study was to evaluate the antifungal susceptibilities of both colonized and invasive clinical C. parapsilosis complex isolates to 10 drugs: amphotericin (AMB), anidulafungin (AFG), caspofungin (CAS), micafungin (MFG), fluconazole (FLZ), voriconazole (VRZ), itraconazole (ITZ), posaconazole (POZ), 5-flucytosine (FCY), and isaconazole (ISA). In total, 884 C. parapsilosis species complex isolates were gathered between January 2005 and December 2020. C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis accounted for 86.3, 8.1, and 5.5% of the cryptic species, respectively. The resistance/non-wild-type rate of bloodstream C. parapsilosis to the drugs was 3.5%, of C. metapsilosis to AFG and CAS was 7.7%, and of C. orthopsilosis to FLZ and VRZ was 15% and to CAS, MFG, and POZ was 5%. The geometric mean (GM) minimum inhibitory concentrations (MICs) of non-bloodstream C. parapsilosis for CAS (0.555 mg/L), MFG (0.853 mg/L), FLZ (0.816 mg/L), VRZ (0.017 mg/L), ITZ (0.076 mg/L), and POZ (0.042 mg/L) were significantly higher than those of bloodstream C. parapsilosis, for which the GM MICs were 0.464, 0.745, 0.704, 0.015, 0.061, and 0.033 mg/L, respectively (P < 0.05). The MIC distribution of the bloodstream C. parapsilosis strains collected from 2019 to 2020 for VRZ, POZ, and ITZ were 0.018, 0.040, and 0.073 mg/L, significantly higher than those from 2005 to 2018, which were 0.013, 0.028, and 0.052 mg/L (P < 0.05). Additionally, MIC distributions of C. parapsilosis with FLZ and the distributions of C. orthopsilosis with ITZ and POZ might be higher than those in Clinical and Laboratory Standards Institute studies. Furthermore, a total of 143 C. parapsilosis complex isolates showed great susceptibility to ISA. Overall, antifungal treatment of the non-bloodstream C. parapsilosis complex isolates should be managed and improved. The clinicians are suggested to pay more attention on azoles usage for the C. parapsilosis complex isolates. In addition, establishing the epidemiological cutoff values (ECVs) for azoles used in Eastern China may offer better guidance for clinical treatments. Although ISA acts on the same target as other azoles, it may be used as an alternative therapy for cases caused by FLZ- or VRZ-resistant C. parapsilosis complex strains.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Qiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongjiang Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Huaiwei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Chun Wang
- Department of Laboratory Medicine, Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ding
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Shuping Zhou
- Department of Laboratory Medicine, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yingjue Wei
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xi
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Lingbing Zeng,
| | - Heping Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Heping Xu,
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wenjuan Wu,
| |
Collapse
|
6
|
Molecular Investigation of Etiologic Agents Causing Vulvovaginal Candidiasis. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.106070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Vulvovaginal candidiasis (VVC) is an ordinary infection caused by Candida species. Meanwhile, a shift towards non-albicans Candida (NAC) species has been detected in VVC patients. Objectives: This study aimed at molecular identification of Candida isolates, causing VVC. Methods: Vaginal secretion samples of 320 non-pregnant vaginitis patients at Shahid Akbar-Abadi Obstetrics and Gynecology Hospital in Tehran (Iran) were collected. Samples were evaluated using mycological and molecular approaches. Vaginitis isolates were analyzed with the PCR using NL1 and NL4 primers, and the D1/D2 region of the large-subunit rRNA gene was amplified and sequenced. Results: In total, 100 Candida isolates were identified from VVC and recurrent vulvovaginal candidiasis (RVVC). Candida albicans was the most frequent (51%), followed by C. glabrata (36%), C. krusei (Pichia kudriavzevii) (8%), and C. kefyr (Kluyveromyces marxianus) (5%). 51 and 49% of isolates had C. albicans and NAC, respectively. Conclusions: Candida albicans and C. glabrata were the most common agents of vulvovaginal candidiasis. NAC spp. (49%) was found as an important agent associated with VVC.
Collapse
|