1
|
Zareshahrabadi Z, Saharkhiz MJ, Izadpanah M, Iraji A, Emaminia M, Motealeh M, Khodadadi H, Zomorodian K. Chemical Composition and Antifungal and Antibiofilm Effects of Vitex pseudo-negundo Essential Oil against Pathogenic Fungal Strains. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3423440. [PMID: 37822892 PMCID: PMC10564579 DOI: 10.1155/2023/3423440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Background Vitex pseudo-negundo is a plant of the Lamiaceae family that grows in different parts of the world and the vicinity of seasonal rivers in Iran. Methods The chemical composition of the Vitex pseudo-negundo essential oils was distilled and evaluated using gas chromatography/mass spectrometry. The antifungal activity of the essential oils against the fungal strains was analyzed by broth microdilution methods as suggested by the Clinical and Laboratory Standards Institute. Furthermore, the antibiofilm activity of the Vitex pseudo-negundo essential oils was assessed using the XTT reduction assay. Results Based on GC/MS analysis, the major components of the Vitex pseudo-negundo essential oils were α-pinene, α-terpinyl acetate, limonene, and (E)-caryophyllene. The growth of tested yeasts was inhibited at concentrations ranging from 2 to 64 μl/mL. Vitex pseudo-negundo fruit essential oil was the most effective in inhibiting yeast growth. Moreover, the essential oils exhibited antifungal activity against filamentous fungi strains. Additionally, the biofilm formation of Candida albicans was inhibited by the leaf, flower, and fruit of the essential oils. Conclusion Considering the significant antifungal activities of these essential oils, they can be considered a potential source for formulating novel agents to control fungal infections.
Collapse
Affiliation(s)
- Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jamal Saharkhiz
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Maryam Izadpanah
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Motealeh
- Cellular and Molecular Biology-Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Adamczak A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. J Fungi (Basel) 2021; 7:360. [PMID: 34063007 PMCID: PMC8147947 DOI: 10.3390/jof7050360] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Fungi from the genus Candida are very important human and animal pathogens. Many strains can produce biofilms, which inhibit the activity of antifungal drugs and increase the tolerance or resistance to them as well. Clinically, this process leads to persistent infections and increased mortality. Today, many Candida species are resistant to drugs, including C. auris, which is a multiresistant pathogen. Natural compounds may potentially be used to combat multiresistant and biofilm-forming strains. The aim of this review was to present plant-derived preparations and compounds that inhibit Candida biofilm formation by at least 50%. A total of 29 essential oils and 16 plant extracts demonstrate activity against Candida biofilms, with the following families predominating: Lamiaceae, Myrtaceae, Asteraceae, Fabaceae, and Apiacae. Lavandula dentata (0.045-0.07 mg/L), Satureja macrosiphon (0.06-8 mg/L), and Ziziphora tenuior (2.5 mg/L) have the best antifungal activity. High efficacy has also been observed with Artemisia judaica, Lawsonia inermis, and Thymus vulgaris. Moreover, 69 plant compounds demonstrate activity against Candida biofilms. Activity in concentrations below 16 mg/L was observed with phenolic compounds (thymol, pterostilbene, and eugenol), sesquiterpene derivatives (warburganal, polygodial, and ivalin), chalconoid (lichochalcone A), steroidal saponin (dioscin), flavonoid (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyl (riccardin D), and cannabinoid (cannabidiol). The above compounds act on biofilm formation and/or mature biofilms. In summary, plant preparations and compounds exhibit anti-biofilm activity against Candida. Given this, they may be a promising alternative to antifungal drugs.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
| | - Hubert Wolski
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, Szpitalna 14, 34-400 Nowy Targ, Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| |
Collapse
|
4
|
Potente G, Bonvicini F, Gentilomi GA, Antognoni F. Anti- Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics (Basel) 2020; 9:antibiotics9070395. [PMID: 32660009 PMCID: PMC7400371 DOI: 10.3390/antibiotics9070395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against Candida spp. Yeasts of the genus Candida are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although C. albicans is still regarded as the most common species, epidemiological data reveal that the global distribution of Candida spp. has changed, and non-albicans species of Candida are being increasingly isolated worldwide. The present study aimed to review the anti-Candida activity of essential oils collected from 100 species of the Lamiaceae family growing in the Mediterranean area and the Middle East. An overview is given on the most promising essential oils and constituents inhibiting Candida spp. growth, with a particular focus for those natural products able to reduce the expression of virulence factors, such as yeast-hyphal transition and biofilm formation. Based on current knowledge on members of the Lamiaceae family, future recommendations to strengthen the value of these essential oils as antimicrobial agents include pathogen selection, with an extension towards the new emerging Candida spp. and toxicological screening, as it cannot be taken for granted that plant-derived products are void of potential toxic and/or carcinogenic properties.
Collapse
Affiliation(s)
- Giulia Potente
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-4290-930
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| |
Collapse
|