1
|
Zhang Y, Liao X, Xu J, Yin J, Li S, Li M, Shi X, Zhang S, Li C, Xu W, Yu X, Yang Y. The Promising Potency of Sodium-Glucose Cotransporter 2 Inhibitors in the Prevention of and as Treatment for Cognitive Impairment Among Type 2 Diabetes Patients. Biomedicines 2024; 12:2783. [PMID: 39767690 PMCID: PMC11673520 DOI: 10.3390/biomedicines12122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for the majority of diabetes mellitus prevalence, is associated with an increased risk of cognition decline and deterioration of cognition function in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2), located in the renal proximal tubule, plays a role in urine glucose reabsorption. SGLT2 inhibitors (SGLT2i), have shown potential benefits beyond cardiac and renal improvement in preventing and treating cognitive impairment (CI), including mild cognitive impairment, Alzheimer's disease and vascular dementia in T2DM patients. Studies suggest that SGLT2i may ameliorate diabetic CI through metabolism pathways, inflammation, oxidative stress, neurotrophic factors and AChE inhibition. Clinical trials and meta-analyses have reported significant and insignificant results. Given their vascular effects, SGLT2i may offer unique protection against vascular CI. This review compiles mechanisms and clinical evidence, emphasizing the need for future analysis, evaluation, trials and meta-analyses to verify and recommend optimal SGLT2i selection and dosage for specific patients.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Chunyu Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
2
|
Davri AS, Katsenos AP, Tulyaganova GK, Tzavellas NP, Simos YV, Kanellos FS, Konitsiotis S, Dounousi E, Niaka K, Bellou S, Lekkas P, Bekiari C, Batistatou A, Peschos D, Tsamis KI. The SGLT2 inhibitor empagliflozin exerts neuroprotective effect against hydrogen peroxide-induced toxicity on primary neurons. Metab Brain Dis 2024; 40:15. [PMID: 39560812 DOI: 10.1007/s11011-024-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
Oxidative stress has been implicated in several chronic pathological conditions, leading to cell death and injury. Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have several overlapping mechanisms as they are both characterized by increased oxidative stress, inflammation, insulin resistance, and autophagy dysfunction. The objective of this study was to elucidate the possible neuroprotective effect of empagliflozin, a sodium-glucose co-transporter 2 inhibitor (SGLT2i), against hydrogen peroxide-induced neurotoxicity in primary hippocampal neurons derived from wild-type (WT) and transgenic AD rats (TgF344-AD). An in vitro oxidative stress model was established using hydrogen peroxide to induce damage to neurons. Empagliflozin pretreatment was tested on this model initially through a cell viability assay. Flow cytometry and cell sorting were employed to discriminate the apoptotic and necrotic neuronal cell populations. Finally, the morphological and morphometric features of the neurons, including dendritic length and spine density, were evaluated using the SNT ImageJ plug-in following immunostaining with GFP. Sholl analysis was used to evaluate the impact of empagliflozin and hydrogen peroxide on dendritic arborization. Empagliflozin tended to ameliorate hydrogen peroxide-induced toxicity in primary neurons derived from WT rats and led to the preservation of dendritic spine density in both WT and TgF344-AD neurons (one-way ANOVA, p < 0.05). A modest improvement in dendrites' length was also observed. Empagliflozin pretreatment can partially mitigate dendritic and spine alterations induced by hydrogen peroxide in primary neurons. These results underscore the impact of empagliflozin on neuronal morphology and highlight its potential as a candidate for the treatment and/or prevention of AD.
Collapse
Affiliation(s)
- Athena S Davri
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Andreas P Katsenos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Guzal K Tulyaganova
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Nikolaos P Tzavellas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Yannis V Simos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Foivos S Kanellos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, Dialysis Center, University of Ιoannina, Nephroxenia Ioannina, Ioannina, 45110, Greece
| | - Konstantina Niaka
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, Ioannina, 45110, Greece
| | - Sofia Bellou
- Biomedical Research Institute, University of Ioannina Network of Research Supporting Laboratories (NRSL) Confocal Laser Scanning Microscopy Unit and Foundation for Research & Technology-Hellas, University Campus, Ioannina, 45110, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Batistatou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece.
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece.
| |
Collapse
|
3
|
Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, Xu J, Zhang D, Yin X, Liu X, Shen Y, Liu J, Xu M, Xia P, Ling J, Wu Y, Liang J, Zhang J, Yu P. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener 2024; 13:41. [PMID: 39123214 PMCID: PMC11312905 DOI: 10.1186/s40035-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.
Collapse
Affiliation(s)
- Jiaqi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Yi Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyue Tang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiao Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Youn YJ, Kim S, Jeong HJ, Ah YM, Yu YM. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: a systematic review and meta-analysis. Front Neuroendocrinol 2024; 73:101131. [PMID: 38367940 DOI: 10.1016/j.yfrne.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
This systematic review and meta-analysis aimed to determine the association between the use of sodium-glucose cotransporter 2 (SGLT-2) inhibitors and dementia onset as well as cognitive function in patients with diabetes mellitus. We comprehensively searched the MEDLINE, Embase, and CENTRAL databases to select relevant studies published up to August 2023. The use of SGLT-2 inhibitors significantly lowers dementia risk compared to SGLT-2i non-users (Hazard ratio: 0.68, 95 % CI: 0.50-0.92). Furthermore, our findings indicated a positive effect of SGLT-2 inhibitor use on cognitive function score improvement, as demonstrated by the standardized mean difference of 0.88 (95 % CI: 0.32-1.44), particularly among populations with mild cognitive impairment or dementia. This systematic review and meta-analysis indicate a potential role of SGLT-2 inhibitors in reducing the risk of dementia in patients with diabetes mellitus. These findings underscore the need for well-controlled large clinical trials and future research in this field.
Collapse
Affiliation(s)
- Yea Jin Youn
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Seungyeon Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Hyun-Jeong Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Young-Mi Ah
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Yun Mi Yu
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|